ReMOTS: Refining Multi-Object Tracking and Segmentation (1st Place Solution for MOTS 2020 Challenge 1)

Fan Yang^{1,2}, Xin Chang¹, Chenyu Dang¹, Ziqiang Zheng³, Sakriani Sakti^{1,2}, Satoshi Nakamura^{1,2}, Yang Wu⁴

¹Nara Institute of Science and Technology, Japan ²RIKEN Center for Advanced Intelligence Project, Japan ³UISEE Technology (Beijing) Co. Ltd., China ⁴Kyoto University, Japan

Background of Multi-Object Tracking and Segmentation (MOTS)

- Problem: detect, segment, and track multiple objects in videos.
- Input: a video sequence contain that multiple RGB images.
- Output: 2D mask and corresponding track ID at each frame.
- Application: action recognition, automatic driving, and others.

Our solution for MOTS

Instance Segmentation

We take off-the-shelf models:

X-101-64x4d-FPN of MMDetection + Mask R-CNN X152 of Detectron 2, which refers to the public detection and segmentation methods.

But, how to fuse instance masks from different models?

Fusing boxes – using NMS

Fusing masks – may also using NMS – but change IoU to IoM (Intersection over Minimum).

Our solution for MOTS

We proposed an offline method, as ReMOTS (Refining Multi-Object Tracking and Segmentation).

Intra-frame Training and Short-term Tracking

consider all of IoU > 0 masks

of frame k+1 for matching

BoT-Reid (TMM 2020)

Appearance

Features

 θ_{short}^{app}

Cosine Similarity

Linear

Assignment

 $\mu + 3\sigma$

in Training Set

inf

0.3

Inter-short-term-tracklet Training

What Happened in Each Step of Appearance Training

J (H₁, H₂) represents Jaccard Index of two normalized histograms H₁ and H₂.

Intra-frame instance masks

Intra-short-tracklet instance mask

Merging Short-term Tracklets

Comparison with others on MOTSChallenge 1

Benchmark Statistics

Tracker	↑ sMO	TSA	IDF1	MOTSA	MOTSP	MODSA	MT	ML	TP	FP	FN	Recall	Precision	ID Sw.	Frag	Hz		
ReMOTS 1. 7	69.9	±3.6	75.0 ±5.6	83.9	84.0	85.1	248 (75.6)	12 (3.7)	28,270	819	3,999	87.6	97.2	388 (442.9)	621 (708.8)	0.3		
	May benefit from refinement							May benefit from mask fusion						Anonymous submission				
<u>PTPM</u> 2.	68.8	±3.5	$68.5{\scriptstyle\pm6.2}$	82.6	84.1	83.7	244 (74.4)	19 (5.8)	28,108	1,084	4,161	87.1	96.3	368 (422.5)	560 (642.9)	10.1		
										Anonymous submission								
GMPHD_SAF 3.	68.4	±3.0	64.9 _{±5.5}	82.6	83.9	84.4	248 (75.6)	10 (3.0)	28,382	1,161	3,887	88.0	96.1	569 (646.9)	770 (875.5)	3.8		
		Anonymous sul							mission									
PT 4. ☑	66.8	±4.9	$67.3{\scriptstyle\pm6.8}$	79.9	84.5	81.1	234 (71.3)	20 (6.1)	27,215	1,059	5,054	84.3	96.3	370 (438.7)	629 (745.8)	0.4		
															Anonymous sub	mission		
DD Vision 5. 7	66.6	±6.2	71.8±7.3	79.7	84.4	80.7	243 (74.1)	15 (4.6)	27,114	1,067	5,155	84.0	96.2	341 (405.8)	559 (665.3)	1.6		
															Anonymous submission			
Lif. TS 6.	66.3	±3.4	$75.0{\scriptstyle\pm5.0}$	79.6	84.2	80.1	224 (68.3)	32 (9.8)	27,112	1,254	5,157	84.0	95.6	182 (216.6)	525 (624.9)	2.3		
															Anonymous submissio			
PA	66.2	±7.1	76.4 ±5.3	78.9	84.6	79.5	235 (71.6)	21 (6.4)	26,516	849	5,753	82.2	96.9	216 (262.9)	449 (546.4)	2.5		
7. 🗸															Anonymous submission			

Since our strategy can be easily adapted to others, will other methods get better performance by applying our appearance encoder and merging?

Limitations of ReMOTS

- 1. An offline approach.
 - It worth to explore how to bring it to online approach.
- It is challenging for ReMOTs to handle objects with similar appearance.
 e.g., good for persons (wear different clothes) but not very useful for vehicles (similar textures)
- 3. Trajectory is not considered in our short-term tracker. Failed to associate fast moving objects.

Slowly moving person with diverse clothes

Fast moving car with similar appearance

Conclusion

- Unlabeled target videos can be used for learning better appearance features, but should take care of the potential of introducing noises.
- The suitable hyper parameters for data association may varies from case to case, and the statistical information of tracklets can be used to adjust them.
- It is preferred to accommodate some insights of ReMOTS to online MOTS.

Thanks for your listening