DEJA-VU: DOUBLE FEATURE PRESENTATION AND ITERATED LOSS IN DEEP TRANSFORMER NETWORKS

Andros Tjandra^{1*}, Chunxi Liu², Frank Zhang², Xiaohui Zhang², Yongqiang Wang², Gabriel Synnaeve², Satoshi Nakamura¹, Goeffrey Zweig²

1) NAIST, Japan

2) Facebook AI, USA

Motivation

- Make feature processing adaptive to what is being said.
 - Different feature processing, depending on what words need to be differentiated in light of a specific utterance.
- To achieve this, we allow a Transformer Network to (re)-attend to the audio features, using intermediate layer activations as the Query.
- Imposing the objective function on the intermediate layer ensures that it has meaningful information — and trains much faster.
- Net using these two methods lowers error rate 10-20% for Librispeech and Video ASR datasets.

Review: Self-attention in Transformers

Dot Product Attention

Multihead Self Attention

Image ref: Attention is all you need (Vaswani et al., NIPS 2017)

Transformer module

Review: VGG + Transformer Acoustic Model

Problems?

- Stacking more and more layers has empirically give better result.
 - Computer vision: AlexNet (<10 layers) -> VGGNet (20 layers) -> ResNet (>100 layers).
- However, training such deep models are difficult.
- With improvements in this paper, we can reliably train up to 36 layer networks.

Idea #1: Iterated Loss

- In the deep neural network, the loss are always the furthest node from the input.
- Early nodes (layers) might received less feedback (due to vanishing gradients).
- We add auxiliary loss in the intermediate node.

$$\begin{aligned} P_{k_l} &= Softmax\left(MLP_l(Z_{k_l})\right) \\ \mathcal{L}_{total} &= Loss(P_M, Y) + \lambda \sum_{l=1}^{L} Loss(P_{k_l}, Y) \end{aligned}$$

Effect of Iterated Loss

• Comparison:

- Baseline 1 CTC (24)
- 2 CTC (12-24)
- 3 CTC (8-16-24)
- 4 CTC (6-12-18-24)
- Coeff $\lambda = 0.3$

Effect of λ

- λ = 0.3 vs 1.0
- λ = 0.3 consistent better compared to 1.0 on 2 CTC and 3 CTC

Idea #2: Feature Re-presentation

 After the iterated loss, we want to dynamically integrate the input features.

- Why?
 - The layer after iterated loss might have partial hypothesis.
 - We could find correlated features based on the partial hypothesis.
- There are several ways we have explored (next slide ->)

(Cont.) Feature Concatenation

• (Top) Feature axis. concatenation

Linear proj. + LN

$$Z_0^{'} = \operatorname{cat}([\operatorname{LayerNorm}(Z_0W_1), E], \operatorname{dim} = 1)$$
 $Z_k^{'} = \operatorname{cat}([\operatorname{LayerNorm}(Z_kW_2), E], \operatorname{dim} = 1)$

- (Btm) Time axis. Concatenation
 - Split A: input as Query
 - Split B: hidden state as Query

Time Cat + Post Projection

$$O = \operatorname{cat}([Z_0^{'}, Z_k^{'}], \operatorname{dim} = 0) \in \mathbb{R}^{2S \times (d_c + d_e)}$$

$$Z_{k+1}^{'} = \begin{cases} \operatorname{Transformer}(\mathbb{Q} = Z_0^{'}, \mathbb{K} = O, \mathbb{V} = O), & \operatorname{split} A \\ \operatorname{Transformer}(\mathbb{Q} = Z_k^{'}, \mathbb{K} = O, \mathbb{V} = O), & \operatorname{split} B \end{cases}$$

$$Z_{k+1} = \operatorname{LayerNorm}(\operatorname{ReLU}(Z_{k+1}^{'}W_3))$$

Final architecture

Result: Librispeech (CTC w/o data augmentation)

Model	Config	dev		test	
		clean	other	clean	other
CTC Baseline	VGG+24 Trf.	4.7	12.7	5.0	13.1
+ Iter. Loss	12-24	4.1	11.8	4.5	12.2
	8-16-24	4.2	11.9	4.6	12.3
	6-12-18-24	4.1	11.7	4.4	12.0
+ Feat. Cat.	12-24	3.9	10.9	4.2	11.1
	8-16-24	3.7	10.3	4.1	10.7
	6-12-18-24	3.6	10.4	4.0	10.8

12% test-clean & 8% test-other relative improvement

20% test-clean & 18% test-other relative improvement

Librispeech with data augmentation

Model	Config	LM	test-clean	test-other	
CTC (Baseline)	VGG+24 Trf.		4.0	9.4	
+ Iter. Loss	8-16-24	4-gram	3.5	8.4	Without ite
+ Feat. Cat	8-16-24		3.3	7.6	increasing T
CTC (Baseline)	VGG+36 Trf.		4.0	9.4	we still get
+ Iter. Loss	12-24-36	4-gram	3.4	8.1	with deepe
+ Feat. Cat	12-24-36		3.2	7.2	

Without iter-loss & feat-cat, increasing Transformer layers with itemps & feat-cat, ance we still get improvement with deeper Transformer

Librispeech with hybrid DNN-HMM

Model	Config	LM	test-clean	test-other
Hybrid (Baseline)	VGG+24 Trf.		3.2	7.7
+ Iter. Loss	8-16-24	4-gram	3.1	7.3
+ Feat. Cat	8-16-24		2.9	6.7

9% test-clean & 12% test-other improvement

Video dataset

Model	Config	video			
		curated	clean	other	
CTC (Baseline)	VGG+24 Trf.	14.0	17.4	23.6	
+ Iter. Loss	8-16-24	13.2	16.7	22.9	
+ Feat. Cat	8-16-24	12.4	16.2	22.3	
CTC (Baseline)	VGG+36 Trf.	14.2	17.5	23.8	13% curated
+ Iter. Loss	12-24-36	12.9	16.6	22.8	8% clean 6% other
+ Feat. Cat	12-24-36	12.3	16.1	22.3	improvement
Hybrid (Baseline)	VGG+24 Trf	12.8	16.1	22.1	9% curated
+ Iter. Loss	8-16-24	12.1	15.7	21.8	4% clean 3% other
+ Feat. Cat	8-16-24	11.6	15.4	21.4	improvement

Conclusion

- We have proposed a method for re-processing the input features in light of the information available at an intermediate network layer.
- To integrate the features from different layers, we proposed selfattention across layers by concatenating two sequences in time-axis.
- Adding iterated loss in the middle of deep transformers helps the performance (tested on hybrid ASR as well).
- Librispeech: 10-20% relative improvements
- Video: 3.2-13% relative improvements

End of presentation

© Thank you for your attention ©