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1 Introduction

Neural machine translation (NMT) has successfully re-
defined the state of the art in machine translation on
several language pairs. One popular framework mod-
els the translation process end-to-end using attentional
encoder-decoder architecture and treats each word in the
vectors of intermediate representation. In such architec-
ture, word embeddings in continuous vector representa-
tions are an almost ubiquitous NMT component. These
representations are sensitive to the meaning of words
and their accurate order and reasonably insensitive to
the replacement of the active voice with a passive voice
[1]. These representation’s behavior assumes that words
in similar contexts have similar meanings. Such em-
beddings represent the semantics of the corresponding
words/sequences, allowing semantic similar words to be
grouped together in the vector spaces to share statistical
power. The embedding layer provides advantages that
increase the robustness for rare data and produce more
natural outputs than statistical phrase-based translation
[2]. Unfortunately, the model maps such similar words
too closely, which complicates distinguishing them. Con-
sequently, NMT generates words that seem natural in the
target sentence that do not reflect the source sentence’s
original meaning. Many studies also argued that NMT’s
translations are often fluent but lack accuracy [3, 4, 5].
For example, the system mistakenly translated “may I”
for “can I”, “dog” for “cat,” “Norway” for “Tunisia,” and
so on. Although it does not destroy the overall natural-
ness, the sentence’s entire meaning might be completely
different, which makes the error critical.

Osamura et al. proposed a simpler solution to incorpo-
rate speech information by an ASR posterior vector. This
might resemble word confusion networks (WCNs) [6] that
can directly express the ambiguity of word hypotheses at
each time point. Osamura et al. [7] reported that acous-
tic information helps distinguish such semantic similar
words as “cut” and “perm” in the encoder part, which
helps the decoder find correct attention points and out-
put correct words in the target language. However, these
works only focused on the source speech from the source
language that was incorporated into the NMT encoder
part.

In this research, we learn how to incorporate acous-
tic information from the target language in collaboration
with a text-to-speech (TTS) system. We integrate acous-
tic information within the NMT decoder by multi-task
learning. Our model learns how to embed and trans-

late the word sequences based on their acoustic and se-
mantic differences to help the model choose the correct
output word by considering its meaning and pronunci-
ation. To the best of our knowledge, this is the first
study that improved NMT in collaboration with TTS. In
our proposed method we use a state of the art sequen-
tial translation model transformer with tied-embedding
as a baseline. Our experiment results show that our pro-
posed approach provides greater improvements than the
standard text-based NMT model.

2 Proposed Approach

An encoder-decoder translation model maps an input se-
quence into a fixed-dimension vector [1]. Such represen-
tations are sensitive to the meaning of the sequence and
accurate word order, but they are insensitive to the re-
placement of the active voice with the passive voice. In
speech synthesis models, these representations are sensi-
tive to the replacement of the active voice with the pas-
sive voice but insensitive to the meaning of the sequence.
These attributes create models that are robust to test
sets and generate natural sequences. On the other hand,
the model sometimes confuses output with similar mean-
ing words and context like a “dog” and “cat” and “may
I” and “can I.”

In this research we used a pre-trained TTS embed-
ding weight for the NMT output layer. The transformer
decoder has two modules that handle the target word:
a target word embedding layer and an output layer. We
treat these two as inverse mappings and tied their weights
[8]. We tied a decoder embedding layer weight and a de-
coder output layer weight. We added a new output layer
where the mapping decoder was hidden using TTS em-
bedding weights that were not updated during training.
This model has two types of output layers. The standard
decoder output layer weight is tied to the decoder em-
bedding weight. This output layer maps decoder hidden
to output for a sensitive sequence meaning. The output
layer, is tied with a TTS embedding weight, maps de-
coder hidden for sensitive sequence pronunciations. We
use these to output the results and back-propagate the
loss:

onmt = Wnmthdec, (1)

otts = Wttshdec, (2)

loss = (1− λ)CE(onmt, y) + λCE(otts, y). (3)

Here hdec is a decoder hidden sequence, Wnmt denotes



Figure 1: Proposed models architectures

a decoder word embedding weight, and Wtts denotes the
TTS encoder embedding weight. In this work, Wtts is not
update during training. We only update Wnmt through
training. We using soft-max cross entropy (CE) to in-
dividually calculate the loss for each output, and λ is
the weight for each loss. We call our proposed method
multi-task learning:

oy = onmt + otts, (4)

loss = CE(oy, y). (5)

We sum both NMT and TTS weight mapping. Since
we do not update the TTS embedding weight during
training, the model updates the NMT embedding weight
scale based on the degree of each layer’s contribution.
If the output from the NMT embedding scale greatly
exceeds the output from the TTS embedding, then the
proposed model resembles a standard NMT. We call our
proposed method joint learning. We summary this sec-
tion in Fig. 1.

3 Experiment

We conducted our experiments using a basic travel ex-
pression corpus (BTEC) [9, 10]. The BTEC Japanese-
English parallel corpus consists of 480-k utterances. We
removed the sentences that have more than 100 charac-
ters and used this dataset to build a baseline and pro-
posed sub-words for the characters for the Transformer
NMT. Next we demonstrate our proposed translation
performance and compare it with the baseline text-based
NMT model. We used OpenNMT1 to make a baseline
and implemented our proposed model on it. Here is a
summary of baseline and our proposed models:

Baseline Text-based NMT
This is a baseline transformer-based text-to-text
translation model.

Proposed Multi-taskNMT

Proposed model with multi-task learning and a se-
mantic weight output layer in test (Fig. 1).

Proposed Multi-taskTTS

Proposed model with multi-task learning and an
acoustic weight output layer in test (Fig. 1).

1OpenNMT: http://opennmt.net/

Proposed Joint
Proposed model with joint learning and both output
layer in test decoding (Fig. 1).

All models performed a beam search (beam size is 5)
algorithm for character sequence auto-regressive decod-
ing.The baseline text-based NMT and our proposed
model used the same settings, and the trainable number
parameters are the same between the proposed model
and the baseline.

Table 1: Translation quality of Japanese-to-English
Model BLEU score WER

Text-based NMT 45.10 35.5%
Multi-taskNMT 50.51 30.5%
Multi-taskTTS 50.23 30.1%

Joint 48.12 32.4%

Table 2: Translation results of Japanese-to-English
Source ミルク を もう 少し く ださ い

Target a little more milk please
Text-based NMT let me have some more milk
Multi-taskNMT a little more milk please

Source 牛肉 と チキン の どちら が よろし い で す か

Target which would you like beef or chicken ?
Text-based NMT ** beef or chicken ?
Multi-taskNMT which would you like beef or chicken ?

Table 1 shows that our proposed method successfully
improved the BLEU scores by 5-points from the text-
based NMT. For further discussion of the model behav-
iors, Table 2 lists the translation results from each model.
Each proposed model output a sentence whose mean-
ing was very similar to the meaning of the target sen-
tence. This means that each proposed model extracted
the meaning of the source sentence and mapped it to the
decoder state. But in contrast in the text-based NMT
baseline, the text-based NMT model failed to choose the
correct word from the decoder state. The output layer
is usually one simple linear regression layer that maps a
vector from a continuous narrow space to a large discrete
space. If the model maps a similar word too closely, then
the output layer cannot separate it again. On the other
hand, our proposed model output a correct word for each
sentence. This reveals that by incorporating acoustic em-
bedding and constructing a model in a multi-task fashion
with two output layers, each layer can map the decoder
state to different output with different weights. The hid-
den representation might be sensitive for both semantic



and pronunciation similarities. Therefore, our proposed
model can choose the correct word that not only depends
on its meaning but also on its pronunciation.

4 Conclusion

We used TTS embedding weight to map translation re-
sults. This approach created an NMT model that is
sensitive to sequence meaning and pronunciation. Our
proposed method outperformed a standard transformer
with BLEU scores. We first considered NMT and TTS
collaboration. Our proposed method made an NMT that
can learn such multi-modal information as text meaning
and pronunciation from a text. Future work will consider
ASR, NMT, and TTS deep joint optimization to improve
the translation performance and improve NMT so that
it can handle other kinds of information, such as images.
Furthermore, we will apply our proposed approach to
more difficult translation data such as TED Talks.
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