

Neural Incremental Speech Recognition Through Attention Transfer

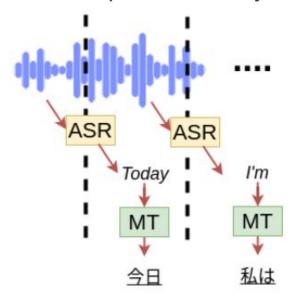
Sashi Novitasari¹, Andros Tjandra¹, Sakriani Sakti^{1,2}, Satoshi Nakamura^{1,2}

¹ Nara Institute of Science and Technology (NAIST), Japan

² RIKEN Center for Advanced Intelligence Project (RIKEN AIP), Japan {sashi.novitasari.si3, andros.tjandra.ai6, ssakti, s-nakamura}@is.naist.jp

Outline

- I Background
- II AT-ISR
- III Experiments
- IV Conclusion


I. Background

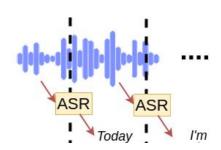
- I Background
- II AT-ISR
- III Experiments
- **IV** Conclusion

Simultaneous Speech Translation

- Human interpreter interprets speech in real-time
- Examples
 - Meeting
 - Lecture talk
- Automatic (machine)
 - Mimic human interpreter and translate incoming speech to the target language with a low delay (incremental)
 - Require ASR that can recognize speech immediately after speech start

Simultaneous speech translation system

Automatic Speech Recognition


Generate transcription of a speech utterance

- Non-incremental ASR
 - Start recognition after speech finish
 - State-of-the-art ASR: Att Enc-Dec (end-to-end)
 - → Not suitable for simultaneous translation

- Recognize without the need for waiting for the speech to finish [Selfridge et al., 2011]
- Part-by-part recognition ☐ challenge
- → <u>Suitable for simultaneous translation</u>

Incremental Speech Recognition

Current situation

- HMM-based ASR is incremental but not end-to-end [Rabiner, 1989; Gales, 2008]
- Seq2seq ISR: train by learning input-output parts alignments (e.g. Neural transducer [Jaitly et al., 2016])
- End-to-end seq2seq ISR → more complex training than standard seq2seq ASR
 - Learn the incremental step?
 - Ground alignments?
 - Alignment generation during training based on ISR model (multiple times)
 - Alignment generation using forced-alignment system (once)

☐ <u>Expensive</u>

Goal

Attention Transfer Incremental Speech Recognition (AT-ISR)

AT-ISR

ISR that learns to mimic attention-based alignment from attention-based ASR

- Reliable ISR with simple construction mechanism by using attention-based seq2seq non-incremental ASR
 - ISR architecture : Att Enc-Dec ASR, identical configuration as a non-incremental ASR
 - Incremental step : Learn the attention alignment knowledge from non-incremental ASR
 - □ Attention transfer
- Attention transfer: Attention knowledge transfer from teacher to student model
 - o Prev. works: image recognition tasks
 - Teach another model with smaller architecture [Zaguruyko and Komodakis, 2017]
 - Domain transfer (image to video) [Li et al., 2017]
 - Has not been utilized for ISR construction

II. AT-ISR

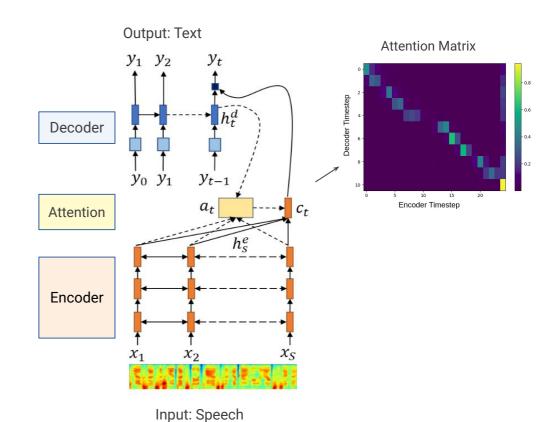
- I Background
- II AT-ISR
- III Experiments
- **IV** Conclusion

Overview

Sequence-to-sequence ASR

- Encoder-decoder with attention mechanism
- 3 main parts

a. Encoder

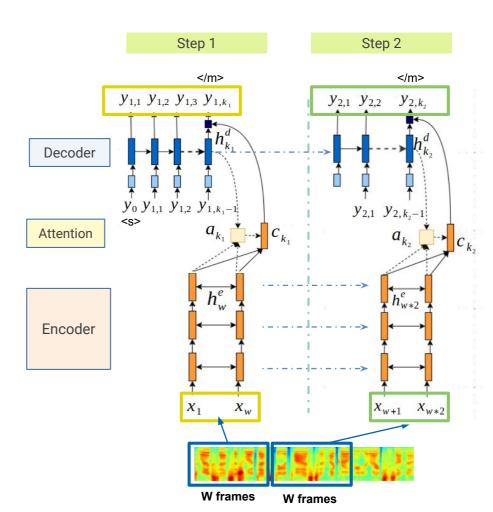

Encode input speech features **X** into encoder hidden state h^e

b. Decoder

Predict output Y by processing previous output, decoder hidden state h^d and encoded information

c. Attention

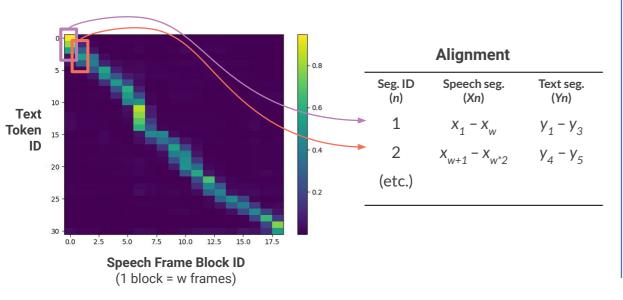
Calculate alignment score between encoder states (input) and decoder states (output)

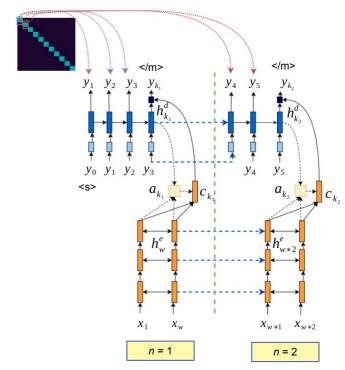


Encoder-Decoder architecture with an attention component

[Bahdanau et al, 2015], courtesy of [Tjandra et al., 2017]

AT-ISR Recognition Method


- Recognize speech segment-by-segment sequentially
- Delay = W speech frames (window)
- For each recognition step:
 - 1. Encode <u>W</u> speech frames (block)
 - **2. Decode** for the output that aligned to the main input block, until *end-of-block* </m> token predicted or max. length reached
 - Attend the current input
 - **3. Shift** the input window *W* frames
- Alignment learning → Attention transfer


Attention Transfer

Train ISR (student) to learn the attention-based alignment from attention-based ASR (teacher)

1) Extract segment-level speech-text alignment from non-incremental ASR attention matrix (alignment pair = high alignment score)

2) Train ISR by using **Yn** + </m> as target of **Xn**

ISR delay can be managed by changing **Xn** and **Yn** size E.g. higher delay: combine each several segments into one

III. Experiment

- I Background
- II AT-ISR
- **III** Experiment
- **IV** Conclusion

Experiment Setting

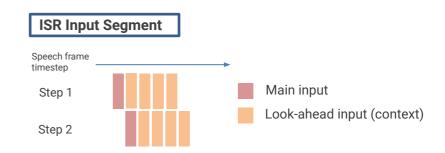
Data

Dataset

- LJ Speech [Ito, 2017]
 - 24 hours of speech (En)
 - Single-speaker
- Wall Street Journal (WSJ-si284) [Paul and Baker, 1992]
 - o 80 hours of speech (En)
 - o 280 speakers

Model Configuration

Structure: Encoder-Decoder with Attention

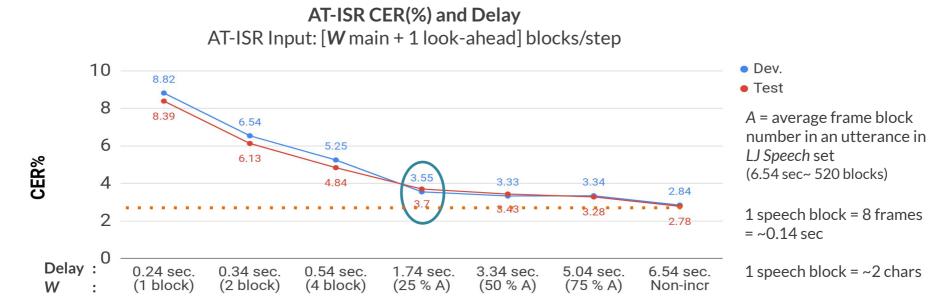

- Encoder
 - o 1 FFN \rightarrow 3 Bi-LSTM
 - Downsample 8 speech frames into 1 encoder state (ISR basic delay= 1 block = 8 frames = 0.14 sec)
- Decoder
 - o Embedding \rightarrow 1 LSTM
 - Output unit: character
- Same structure for non-incremental ASR (teacher) and AT-ISR (student)

Experiment Result

Speech Recognition Result

Model	Delay (sec)	CER%	
LJ Speech			
Topline ASR (Teacher)	6.54 (avg)	2.78	
Baseline ISR (input/step: 1 m)	0.14	80.34	
AT-ISR (input/step: 1 m)	0.14	23.04	
AT-ISR (input/step: $1 m + 4 la$)	0.54	4.45	
WSJ-si284			
Topline ASR (Teacher)	7.88 (avg)	6.80	
AT-ISR (input/step: $1 m + 4 la$)	0.54	9.06	

- m: main block (main recognition target)
- la: look-ahead context block (frames next to the main block)
- 1 block = 8 frames = 0.14 sec
- Baseline: Incremental recognition by using teacher ASR



- AT-ISR has a close performance to the teacher
 ASR when the input includes look-ahead blocks
- Look-ahead blocks complete the information in the main block
- Non-incremental ASR (delay > 6 sec) and AT-ISR (delay = 0.54 sec) CER difference: 2%

AT-ISR performs well with a short delay by learning non-incremental ASR's knowledge

Effect of Speech Recognition Delay

- LJ Speech dataset
- Tradeoff: Higher delay □ higher performance
- Insignificant improvement after certain delay conf. □ **shortest delay with best performance**

IV. Conclusion

- I Background
- II AT-ISR
- III Experiment
- **IV** Conclusion

Conclusion

We constructed ISR that performs a low-delay speech recognition

- AT-ISR learn attention knowledge from non-incremental ASR that has an identical structure
- AT-ISR able to perform closely to the teacher by incrementally recognizing short input segments with context blocks (low latency and reliable)
 - o LJ Speech CER □ teacher 2.84% (delay 6.54 sec); student 4.45% (delay 0.54 sec)
 - \circ WSJ CER \Box teacher 6.80% (delay 7.88 sec); student 9.06% (delay 0.54 sec)

Thank You

Appendix

ASR Output

Delay	ASR Output	CER%
0.14 sec (1 block)	which probably represent the burtabic condition before limbs were a quired*	11.5
0.24 sec (2 block)	which probably represent the burtabrit* condition before limbs were acquired,	7.7
1.74 sec (25% utt. length)	which probably represent the burtebrate condition before limbs were acquired,	3.8
3.34 sec (50% utt. length)	which probably represent the vertebrate condition before limbs were acquired*	1.3
6.64 sec (Non-incremental)	which probably represent the vertebrate condition before limbs were acquired,	1.3
Correct text	which probably represent the vertebrate condition before limbs were acquired;	

(*): missing character

red character: incorrect character