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• Most machine learning system are mostly trained on parallel dataset
– However, this is not always applicable

– Need ability to learn from unpaired data

• Feedback links to use unpaired dataset
– Dual NMT (He+, 2016); CycleGAN (Zhu+, 2017)

Introduction

[1] Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, and Wei-Ying Ma. Dual learning for machine translation. In Advances in Neural Information Processing Systems, pages 820–828, 2016. 
[2] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Computer Vision (ICCV), 2017 IEEE International 
Conference on, 2017.
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• Model of human communication

• Providing a technology with the ability to listen and speak
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• Develop a closed loop speech chain model based on deep learning

• The first deep learning model that integrates human speech perception and production 
behaviours

Previously: Machine Speech Chain [Tjandra+, 2017]
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[1] Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. Listening while speaking: Speech chain by deep learning. CoRR, abs/1707.04879, 2017.
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A closed-loop architecture:

→ In training stage:    
 Allow to train with labeled and unlabeled data (semi-supervised learning)
 Allow ASR and TTS to teach each other using unlabeled data and generate useful feedback

→ In Inference stage: Possible to use ASR & TTS module independently

Machine Speech Chain

Feedback

Speaking

Listening
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• Speech chain is still limited to speech and textual modalities

• What if all the text and speech data has been used? Can we use other data?

• Natural communication is auditory + visual

Speech Chain Limitation

“a cake”
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• Visual chain = image captioning (IC) + image retrieval (IR)

• Multimodal chain = speech chain + visual chain

Proposed: Multimodal Machine Chain

Speech Chain
[Tjandra+ , 2017]

Multimodal Machine Chain
(Proposed Method)
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• ASR: Listen, Attend, and Spell [Chan+, 2016]
– LSTM encoder-decoder ASR model

• TTS: Tacotron [Wang+, 2017]
– encoder-decoder speech synthesis model

• IC: Show, Attend, and Tell [Xu+, 2015]
– Using ResNet encoder

• IR: Joint Multimodal Embedding [Vilalta+, 2015]
– Modified from full network embedding to normal encoder embedding

Model Details

8 / 36
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Framework Training Mechanism
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Assume we index all of our data row into ii for speech, jj for text, and kk for image

• Type 1: Paired

ii == jj == kk

(i.e.: every speech has transcription, every image has caption)

• Type 2: Unpaired

ii != jj != kk

(i.e.: speech, text, image are available but no correlation)

• Type 3: Single modality

ii xor jj xor kk

(only speech or text or image is available)

Possibility of Data Condition
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Training Mechanism

Type 1: Paired speech-text-image data exists
(Supervised learning)
• Separately train ASR, TTS, IC, and IR

Type 2: Speech, text, and image data exists, but unpaired
(Unsupervised learning)

a. speech data: speech chain ASR → TTS
b. image data: visual chain IC → IR
c. text data: speech chain TTS → ASR, visual chain IR → IC

Type 3: Single modality data (either speech, text, or image exist)
(Unsupervised learning)

a. text data  : (TTS → ASR) || (IR → IC)
b. speech data : (ASR → TTS) || (ASR → IR → IC)
c. image data : (IC → IR) || (IC → TTS → ASR)

ASR

IRTTS

IC

Type 1
(ASR, TTS, IC, IR)
supervised learning
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Training Mechanism

Type 2a and 2c. 
(ASR → TTS, TTS → ASR)

speech chain

Type 1: Paired speech-text-image data exists
(Supervised learning)
• Separately train ASR, TTS, IC, and IR

Type 2: Speech, text, and image data exists, but unpaired
(Unsupervised learning)

a. speech data: speech chain ASR → TTS
b. image data: visual chain IC → IR
c. text data: speech chain TTS → ASR, visual chain IR → IC

Type 3: Single modality data (either speech, text, or image exist)
(Unsupervised learning)

a. text data  : (TTS → ASR) || (IR → IC)
b. speech data : (ASR → TTS) || (ASR → IR → IC)
c. image data : (IC → IR) || (IC → TTS → ASR)
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Training Mechanism

Type 2b and 2c. 
(IC → IR, IR → IC)

visual chain

Type 1: Paired speech-text-image data exists
(Supervised learning)
• Separately train ASR, TTS, IC, and IR

Type 2: Speech, text, and image data exists, but unpaired
(Unsupervised learning)

a. speech data: speech chain ASR → TTS
b. image data: visual chain IC → IR
c. text data: speech chain TTS → ASR, visual chain IR → IC

Type 3: Single modality data (either speech, text, or image exist)
(Unsupervised learning)

a. text data  : (TTS → ASR) || (IR → IC)
b. speech data : (ASR → TTS) || (ASR → IR → IC)
c. image data : (IC → IR) || (IC → TTS → ASR)
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Training Mechanism

Type 3b. (ASR → IR → IC)
speech chain → visual chain

Improving IC even without 
image and text data

Type 1: Paired speech-text-image data exists
(Supervised learning)
• Separately train ASR, TTS, IC, and IR

Type 2: Speech, text, and image data exists, but unpaired
(Unsupervised learning)

a. speech data: speech chain ASR → TTS
b. image data: visual chain IC → IR
c. text data: speech chain TTS → ASR, visual chain IR → IC

Type 3: Single modality data (either speech, text, or image exist)
(Unsupervised learning)

a. text data  : (TTS → ASR) || (IR → IC)
b. speech data : (ASR → TTS) || (ASR → IR → IC)
c. image data : (IC → IR) || (IC → TTS → ASR)
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Training Mechanism

Type 3c. (IC → TTS → ASR)
visual chain → speech chain

Improving ASR even without 
speech and text data

Type 1: Paired speech-text-image data exists
(Supervised learning)
• Separately train ASR, TTS, IC, and IR

Type 2: Speech, text, and image data exists, but unpaired
(Unsupervised learning)

a. speech data: speech chain ASR → TTS
b. image data: visual chain IC → IR
c. text data: speech chain TTS → ASR, visual chain IR → IC

Type 3: Single modality data (either speech, text, or image exist)
(Unsupervised learning)

a. text data  : (TTS → ASR) || (IR → IC)
b. speech data : (ASR → TTS) || (ASR → IR → IC)
c. image data : (IC → IR) || (IC → TTS → ASR)
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Experiment
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• Experiment using Flickr30k dataset
(train 29k, dev 1k, test 1k)

• Photos of everyday activities and 
scenes

• One image has five caption sentences

• Single speaker synthesized speech 
using Google TTS

Dataset

Data Speech Text Image # Data

(D1) ○ ○ ○ 2000

(D2) ∆ ∆ ∆ 7000

(D3x) ∆ x x 10000

(D3z) x x ∆ 10000

○ = available paired; ∆ = available unpaired; x = not available
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Training Mechanism

Type 1: Paired speech-text-image data exists
(Supervised learning)
• Separately train ASR, TTS, IC, and IR

Type 2: Speech, text, and image data exists, but unpaired
(Unsupervised learning)

a. speech data: speech chain ASR → TTS
b. image data: visual chain IC → IR
c. text data: speech chain TTS → ASR, visual chain IR → IC

Type 3: Single modality data (either speech, text, or image exist)
(Unsupervised learning)

a. text data  : (TTS → ASR) || (IR → IC)
b. speech data : (ASR → TTS) || (ASR → IR → IC)
c. image data : (IC → IR) || (IC → TTS → ASR)

Data Speech Text Image # Data

(D1) ○ ○ ○ 2000

(D2) ∆ ∆ ∆ 7000

(D3x) ∆ x x 10000

(D3z) x x ∆ 10000

○ = available paired; ∆ = available unpaired; x = not available

Partition of the Flickr30k dataset
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• ASR: word error rate
– comparing edit distance of hypothesis transcription and ground truth transcription

• TTS: L2-norm^2
– Comparing generated mel-spectrogram with ground truth mel-spectrogram

• IC: BLEU
– Bilingual Evaluation Understudy [Papineni+, 2002] 

– commonly used in NMT to compare using matching n-grams

• IR: Recall @ k
– Proportion of relevant items in the top-k retrieved result

• IR: med r
– Highest ranked ground truth result

Evaluation Metric
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• Using the train, dev, and test set of Flickr30k

• Experiment purpose:
– Not to show that the multimodal chain can outperform a baseline that was only trained with a small 

dataset

– But to identify how much we can improve performance when the required data are no longer 
available

• Trained a topline to show that our model works as good as other model when 
supervised training is possible
– ASR and TTS using Wall Street Journal (WSJ-SI284) speech dataset

– IC and IR using Flickr30k dataset

Experiment Settings



Johanes Effendi @ AHC Lab., NAIST/RIKEN AIP, Japan 21

• Train each model independently using supervised training

• In fully supervised condition, our model works as well as previously published studies.

Topline Results (when a large amount of paired data exists)

Data
ASR 

CER(%) ↓
TTS 

L2-norm2↓

Kim et al. (2017) 11.08 -

Tjandra et al. (2018) 6.60 0.682

Ours 6.87 0.653

Data
IC

BLEU1↑

IR

R@10 ↑ Med r ↓

Xu et al. (2015) 67.00

Vilalta et al (2017) - 59.8 6

Ours 66.27 62.4 5

ASR and TTS performance on WSJ-SI284 IC and IR performance on Flickr30k
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ASR and TTS results on Flickr30k IC and IR results on Flickr30k

ASR improvement even without speech and text data available

Data ASR WER (%) ↓ TTS L2-norm2↓
Initial model: ASR and TTS 

Supervised learning – Type 1
D1 2k
Speech+text

81.31 0.874

Proposed: speech chain ASR→TTS and TTS→ASR
Semi-supervised learning – Type 2a and 2c

+D2 7k
Speech/text

10.60 0.714

Proposed: visual chain → speech chain
Semi-supervised learning – Type 3c

+D3z 10k 
Image only

7.97 0.645

Topline: ASR and TTS separately
Supervised learning – Full data

All 29k 2.37 0.398

Data IC BLEU1↑ IR R@10↑ IR med r↓
Initial model: IC and IR 

Supervised learning – Type 1
D1 2k
Image+text

33.91 26.88 34

Proposed: visual chain IC→IR and IR→IC
Semi-supervised learning – Type 2b and 2c

+D2 7k
Image/text

42.11 28.14 31

Proposed: speech chain → visual chain
Semi-supervised learning – Type 3b

+D3x 10k
Speech only

43.08 28.44 30

Topline: IC and IR separately
Supervised learning – Full data

All 29k 66.27 62.42 5

Experiment Results (when only a small amount of paired data exists)
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• Empower speech chain into multimodal chain

• Visual chain by jointly training IC and IR model

• ASR improvement even without speech and text data available

• Jointly train both speech and visual chain together

• Investigate result on natural multispeaker speech dataset

Conclusion and Future Work
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• End of slide


