

Speech-to-Speech Translation without Text

Andros Tjandra¹, Sakriani Sakti^{1,2}, Satoshi Nakamura^{1,2}

Nara Institute of Science & Technology, Nara, Japan
 RIKEN AIP, Japan

Outline

- Introduction
- Technical Background
- Training and Inference
- Experimental Setup & Results
- Conclusion

1. Introduction

 Speech-to-speech translation technology overcomes language barrier from human communication

Challenges:

- Training requires speech-text pairs (cascade ASR-NMT-TTS).
- Jia et al. 2019 proposed direct speech-to-speech, however can't converge without pre-training with text.
- Not all languages has written form.

1. Our proposal ...

- Direct speech-to-speech translation for unknown languages (no prior knowledge about the language needed).
- No transcription needed for both source and target languages.

2. Technical Background

- We utilize 3 different models:
 - Unsupervised unit discovery with discrete autoencoder (VQ-VAE)
 - Sequence-to-sequence to translate audio to codebook
 - Codebook-to-spectrogram inverter to re-synthesize the translated audio

Unsupervised unit discovery with discrete autoencoder (VQ-VAE)

Speech signal can be disentangled into {contexts, speaking style}

$$Enc_{\theta}(x) = q_{\theta}(y|x)$$

 $Dec_{\phi}(y,s) = p_{\phi}(x|y,s)$
Codebook $E = [e_1,...,e_K]$
Speaker vec $V = [v_1,...,v_L]$

Continuous speech (harder target)

Discrete symbol (easier target)

Training VQ-VAE

$$q_{\theta}(y = c|x) = \begin{cases} 1 & \text{if } c = \operatorname{argmin}_{i} \operatorname{Dist}(z, e_{i}) \\ 0 & \text{else} \end{cases}$$

$$e_{c} = \mathbb{E}_{q_{\theta}(y|c)}[\mathbf{E}]$$

$$= \sum_{i=1}^{K} q_{\theta}(y = i|x) e_{i}.$$

$$\mathcal{L}_{VQ} = -\log p_{\theta}(x|y,s) + ||sg(z) - e_c||_2^2 + \gamma ||z - sg(e_c)||_2^2$$

Reconstruction loss

Embedding loss

Committeent loss

Sequence-to-Sequence from Speech to Codebook

Input $X = [x_1, ..., x_S]$ as the speech from source language Output $Y = [y_1, ..., y_T]$ as the codebook from target language

Encoder consisted of Bi-LSTMs and decoder consisted of LSTMs

Codebook Inverter

Input is codebook embedding $E_Y = [E[y_1], ..., E[y_T]]$

Output is linear magnitude spectrogram

 We use Griffin-Lim to recover phase spectrogram and inverse Fourier transform to recover the waveform.

Training and inference

3. Experimental Setup

- Dataset: Basic Travel Expression (BTEC) corpus
- Language pairs:
 - French to English (similar grammatical structure)
 - Japanese to English (distant grammatical structure)
- Size:
 - Training 162.318 sentences pair
 - Test 510 sentences pair
- Speech features:
 - Input: MFCC (39 dimensions)
 - Output: Linear spectrogram (1025 dimensions)

Evaluation

- Because the large number of test samples, it is hard to do subjective evaluation.
- How we do evaluation:
- 1. Train English ASR
- 2. Translate source language speech to target language speech
- 3. Use trained ASR (step 1) to recognize translated speech
- 4. Calculate BLEU and Meteor between groundtruth and ASR transcription

Result

- Model:
 - Baseline (direct spectrogram-to-spectrogram)
 - Proposed SP2C (C=codebook size, T=time reduce)
 - Topline (speech src-> text tgt*-> speech tgt, *requires text transcription during training)

Model	BLEU4	METEOR
Baseline (FR-EN & JA-EN)	Not converged	
SP2C FR-EN C=64, T=12	25	23.2
Topline FR-EN (Cascade) *	47.4	41.2
SP2C JA-EN C=128, T=8	15.3	15.3
Topline JA-EN (Cascade) *	37.4	32.8

Additional result

Translation samples : https://sp2code-translation-v1.netlify.com/

Model	Transcription	
Groundtruth	how long are you going to stay	
SP2C FR-EN	how long are you going to stay	
SP2C JA-EN	how long will it take	
Groundtruth	please tell him to call me as soon as he comes in	
SP2C FR-EN	please tell him to call me back	incomplete
SP2C JA-EN	please tell him that i called	transcription

Based on the example, 1) gives quite close result However, 2) SP2C result left out the latter part

Conclusion

- We proposed a novel approach for training speechto-speech translation w/o transcription
- Experiments was performed on French-English & Japanese-English

© Thank you for listening ©