Hierarchical Tensor Fusion Network for Deception Handling Negotiation Dialog Model

Nguyen The Tung¹, Koichiro Yoshino^{1,2,3}, Sakriani Sakti^{1,3}, and Satoshi Nakamura^{1,3}

¹Augmented Human Communication – Nara Institute of Science and Technology ²PRESTO, JST, Japan

³Center for Advanced Intelligence Project (AIP), RIKEN, Japan

1. Overview

Background: An effective negotiation system needs to know whether the other party (user) is lying or **not** to choose the most appropriate response.

Deception detection:

- Classification human's spoken utterances into lie or truth.
- Current state-of-the-art models use multimodal approach

Problems: Current multimodal fusion methods cannot take full advantage of the rich multimodal information.

- Do not differentiate the abstraction level of information
- Complex and inefficient learning of features interaction

Our solution: Hierarchical tensor fusion network (Hierarchical TFN)

- Combination of hierarchical fusion (Tian et.al 2015) and tensor fusion (Zadeh et.al 2017)
- Balance the abstraction level and learning features interaction efficiently.

Results:

- Proposed fusion method outperforms the others by more than 4%.
- Achieves highest DA selection accuracy when Hierarchical-TFN-based labels from using deception detector.

2. Problems: basic fusion methods

Multimodal fusion methods used in current multimodal deception detection works.

Early fusion:

- distinction level 😊
- Entangle the learning of intra-modality and inter-modality interactions 😊

Late fusion:

- of distinction abstraction 5 modality level 😊
- Cannot learns intermodality interactions 🚡

2. Problems: Advanced fusion methods

acoustic

Hierarchical fusion:

 Can balance modality abstraction level ©

 Entangle the learning of intra-modality and intermodality interactions 🕾

Tensor fusion (TFN):

Embedding subnetworks

M $M_{ij} = v_i . a_i$ v = vector of visual embedding, |v| = V

 Separate learning of intra-modality interactions (embedding subnetwork) and inter-modality interactions (fusion subnetwork) ©

Fusion subnetwork

visual

x, $|x| = V \times A$

3. Proposed fusion method

Hierarchical tensor fusion (Hierarchical TFN):

Embedding subnetworks

Advantages of hierarchical tensor fusion:

- ✓ Balance the abstraction level of different modalities.
- interactions.
- ✓ Prevent learning of unimportant interactions, reduce unnecessary parameters and make network structure simpler.

4. Experiment #1 **Deception detection**

Dataset:

- Real-life trial (Rosas et.al 2015): recordings from court trials, 245 (105/140; deceptive/truthful)
- Simulated health consultation (Tung et.al 2018): 1021 (177/844)
- Total: 1266 (282/984)

Features extraction:

- Visual: Face Action Units, using (Baltrusaitis et.al 2016)
- Acoustic: IS_09 emotion acoustic features set, (Eyben et.al 2010)

Experiment setup:

- 4-fold cross-validation
- Utterances from same recording belong (train, to same set development or test)

Experimental results

iviodei	Accuracy	Precision	Recall	FT-Score
Single acoustic	53.78%	0.475	0.500	0.487
Single visual	49.28%	0.409	0.353	0.388
Multi early	53.42%	0.460	0.357	0.402
Multi late	54.68%	0.479	0.381	0.425
Multi hierarchical	53.78%	0.473	0.471	0.472
Multi TFN	50.36%	0.421	0.353	0.384
Multi hierarchical TFN	58.63%	0.530	0.500	0.515

Model Accuracy Precision Pecall E1-score

- Precision, recall, and F1-score are measured for deceptive label (positive).
- Single visual model performance is much worse than single visual acoustic
- The Hierarchical TFN outperforms all other methods significantly.

- ✓ Separate learning of intra-modality and inter-modality
- ✓ Forcing the network to learn useful intra-modality interactions from certain modalities.

4. Experiment #2: Negotiation System's dialog management

Negotiation system's dialog management

Dialog modeling:

- Model the dialog management process using Partially Observable Markov Decision Process (POMDP).
- Dialog state: s = (u, d) u: user's dialog act, d: user's deception.
- State transition: $P(u^{t+1}, d^{t+1}|u^t, d^t, \hat{a}^t) = P(u^{t+1}|d^{t+1}, u^t, d^t, \hat{a}^t) P(d^{t+1}|d^t, \hat{a}^t)$ intention model
- Train the dialog management using reinforcement learning: $Q(s^{t}, a^{t}) = (1 - \alpha)Q(s^{t}, a^{t}) + \alpha \left(r^{t} + \gamma \max_{a^{t+1}} Q(s^{t+1}, a^{t+1})\right)$

Experimental results

Deception labels used for dialog management	System DA selection accuracy	
Chance rate deception	65.69%	
Gold-label deception	80.31%	
Single visual prediction	70.15%	
Single acoustic prediction	66.22%	
Multi early prediction	66.48%	
Multi late prediction	68.58%	
Multi hierarchy prediction	69.10%	
Multi TFN prediction	69.66%	
Multi Hierarchical TFN prediction	71.20%	

- Human expert selects best reaction in each dialog turn (based on annotated user's action and user's deception)
- Compare system's choice with human choice for each dialog turn.
- Highest accuracy of DA selection achieved when using labels predicted by Hierarchical TFN deception detection model.

5. Discussion

- Collect/augment more multimodal deception data for evaluation on a larger scale
- Applied this fusion methods for other multimodal processing tasks: emotion or sentiment analysis