NEURAL MACHINE TRANSLATION WITH ACOUSTIC EMBEDDING

Takatomo Kano', Sakriani Sakti', and Satoshi Nakamura'>

!Nara Institute of Science and Technology, Japan
2RIKEN, Center for Advanced Intelligence Project AIP, Japan

ABSTRACT

Neural machine translation (NMT) has successfully redefined the
state of the art in machine translation on several language pairs. One
popular framework models the translation process end-to-end using
attentional encoder-decoder architecture and treats each word in the
vectors of intermediate representation. These embedding vectors are
sensitive to the meaning of words and allow semantically similar
words to be near each other in the vector spaces and share their sta-
tistical power. Unfortunately, the model often maps such similar
words too closely, which complicates distinguishing them. Conse-
quently, NMT systems often mistranslate words that seem natural
in the context but do not reflect the content of the source sentence.
Incorporating auxiliary information usually enhances the discrim-
inability. In this research, we integrate acoustic information within
NMT by multi-task learning. Here, our model learns how to embed
and translate word sequences based on their acoustic and semantic
differences by helping it choose the correct output word based on its
meaning and pronunciation. Our experiment results show that our
proposed approach provides more significant improvement than the
standard text-based transformer NMT model in BLEU score evalua-
tion.

Index Terms— Neural machine translation, acoustic and se-
mantic embedding representation

1. INTRODUCTION

An end-to-end deep learning framework provides an emerging ap-
proach for sequence-to-sequence mapping tasks and allows a model
to directly learn the mapping between the variable-length represen-
tation of the input and the output. Most successful neural sequence
translation models are based on end-to-end attentional encoder-
decoder architecture [1, 2, 3, 4]. The words of the input sequences
from a source language are first encoded into vectors of intermediate
representation and passed to the decoder. A compressed context
vector is derived by applying an attention mechanism, which mea-
sures the alignment between the source and target texts. The decoder
output layer takes the embedded vector and the previously translated
word as input and produces a target translated word at the current
step.

In such architecture, word embeddings in continuous vector
representations are an almost ubiquitous NMT component. These
representations are sensitive to the meaning of words and their ac-
curate order and reasonably insensitive to the replacement of the
active voice with a passive voice [1]. These representation’s behav-
ior assumes that words in similar contexts have similar meanings.
Such embeddings represent the semantics of the corresponding
words/sequences, allowing semantic similar words to be grouped
together in the vector spaces to share statistical power. The embed-
ding layer provides advantages that increase the robustness for rare

data and produce more natural outputs than statistical phrase-based
translation [5].

Unfortunately, the model often maps such similar words too
closely, which complicates distinguishing them. Consequently,
NMT often generates words that seem natural in the target sentence
that do not reflect the source sentences original meaning. Many
studies also argued that NMTs translations are often fluent but lack
accuracy [6, 7, 8]. For example, the system mistakenly translated
“may I” for “can I”, “dog” for “cat,” “Norway” for “Tunisia,” and
so on. Although it does not destroy the overall naturalness, the sen-
tences entire meaning might be completely different, which makes
the error critical.

Several studies incorporated auxiliary features that were inte-
grated into the word vectors. To date, such linguistic features as
lemmas improved the NMT results when they are appended to the
word vector at the encoder [9] or decoder [10]. Incorporating la-
tent Dirichlet allocation (LDA) [11] topic vectors also provides ad-
vantages [12]. Auxiliary information in the form of multi-modal
streams with images has also been integrated into NMTs [13, 14].
Deena et al. [15] investigated another modality with acoustic in-
formation in which audio features as show-level i-vectors [16] and
Latent Dirichlet Allocation (LDA) [11] topic vectors are incorpo-
rated within NMT and improved the translation quality more than
with text-based NMT. Most of these works only focused on the en-
hancement of the embeddings part but did not changed the NMT
architecture.

Another approach is to consider the overall speech translation
as a multimodal translation task. An extreme case is training the
encoder-decoder architecture for end-to-end speech translation (ST)
tasks, which directly translate the speech in one language into text
in another [17, 18, 19]. Su et al. [20] and Sperber et al. [21] incor-
porated an automatic speech recognition (ASR) lattice by replacing
the encoder part with a lattice encoder to obtain a lattice-to-sequence
model. Although it provided significant advantages, the approach re-
quired a large modification for standard NMT systems. Osamura et
al. proposed a simpler solution to incorporate speech information by
an ASR posterior vector. This might resemble word confusion net-
works (WCNs) [22] that can directly express the ambiguity of word
hypotheses at each time point. Osamura et al. [23] reported that
acoustic information helps distinguish such semantic similar words
as “cut” and “perm” in the encoder part, which helps the decoder
find correct attention points and output correct words in the target
language. However, these works only focused on the source speech
from the source language that was incorporated into the NMT en-
coder part.

In this research, we learn how to incorporate acoustic informa-
tion from the target language in collaboration with a text-to-speech
(TTS) system. We integrate acoustic information within the NMT
decoder by multi-task learning. Our model learns how to embed
and translate the word sequences based on their acoustic and seman-

tic differences to help the model choose the correct output word by
considering its meaning and pronunciation. To the best of our knowl-
edge, this is the first study that improved NMT in collaboration with
TTS. In our proposed method we use a state of the art sequential
translation model transformer with tied-embedding as a baseline.
Our experiment results show that our proposed approach provides
greater improvements than the standard text-based NMT model.

2. TRANSFORMER FRAMEWORK

2.1. Standard transformer architecture

A transformer is a encoder-decoder sequence-to-sequence transac-
tion model without recurrent mechanics. The encoder maps an input
sequence of symbol representations X = [Xi;::}; Xn] to a sequence
of continuous representations h = [hy;::;;hn]. Given h, the de-
coder generates output sequence Y = [i; ::!; Y1] of the symbols one
element at a time.

The transformer follows this overall architecture using stacked
self-attention and point-wise, fully connected layers for both the en-
coder and decoder [24]. The encoder is composed of a stack of mul-
tiple layers, each of which has two sub-layers. The first is a multi-
head self-attention mechanism, and the second is a position-wise
fully connected feed-forward network (FNN). The transformer has a
residual connection around each of the two sub-layers, followed by
layer normalization [25, 26]. The decoder is also composed of mul-
tiple layers like the encoder. In addition to the two sub-layers in each
encoder layer, the decoder inserts a third sub-layer, which performs
multi-head attention over the encoder stacks output. The attention
function resembles mapping a query and a set of key-value pairs to
an output, where the query, keys, values, and output are all vectors.
The output is computed as a weighted sum of the values, where the
weight assigned to each value is computed by a compatibility func-
tion of the query with the corresponding key. Fig. 1 illustrates the
overall architecture of the transformers.

Basically, the transformer model offers two benefits: (1) it en-
ables parallel training by removing recurrent connections, such as
an input sequence so that a decoder can be provided in parallel; (2)
self-attention provides an opportunity for injecting the global context
of the whole sequence into each input frame to directly build long-
range dependencies. When perform forward and backward process-
ing for current input and output, Transformer only makes the cal-
culation graph path for relative states that attended by self-attention
mechanism. But the RNN based encoder decoder model makes the
calculation graph path for all previous states because it models the
global context with recurrent structures. This provides great support
to reduce memory resource in such long sequence-to-sequence tasks
as the prosody of synthesized speech and character-based transla-
tion, which depends on both several neighboring components and
the overall sequence. In this research, we construct a character-based
transformer for NMT and TTS and describe it in more detail in the
following section.

2.2. Transformer NMT

We constructed a Japanese-to-English text translation system in
which the input is Japanese sub-word sequences, and the output is
English character sequences. Most encoder-decoder systems per-
form teacher-forcing during training and auto-regression [27] during
tests. The decoder part is usually affected by its decoding error
during autoregression. This phenomenon has been well observed in
character-based decoding. There are two solutions for this problem:

English
Character

Add & Norm
Feed
Forward
I Add & Norm lﬂ_:
Add & Norm Mult-Head
Feed Attention
Forward)) Nx
]
N Add & Norm
X T
¢-—| Add & Norm | VT
Multi-Head Multi-Head
Attention Attention
t AT —
k_ J & —)
Positional
Encoding D QR RO
Input Output Tied weight
Embedding Embedding
Japanese English
Sub-word Character

(Shifted right)

Fig. 1. Transformer architecture in this research slightly modified
from original transformer [24]

applying a high dropout ratio (over 0.7) to the decoder embedding
vector or adding Gaussian noise to the decoder embedding vector.
In this research, we use Gaussian noise to make the decoder robust
to decoding error. Our decoder embedding part accommodates the
following input vector, the noise, and the position information: First,
the input embedding is defined:

ei = Wyi; (D

where W is the embedding weight and yi; is the ith input one-hot
vector. Here we use noise features based on the embedding vector
scale:

noisei = Noise(ei); ?2)

where Noise is the Gaussian noise distribution and is the noise rate,
which in this research we set to 0:2. Then we defined the position
embedding vector:

pei = PE(i); 3

where PE means position encoding [28] that provides the current
decoding position information as a vector. Finally we computed our
decoder embedding vector:

emb; = e; + noisej + pei: 4)

We employ a trainable parameter to the weighting position informa-
tion, the same as Transformer TTS [29].

e -
{' English CEngllsh ;
Character haracter
(Multi-task NMT) (Multi-task TTS)
|
i
i

English \
Character

4
|
i
i
|

I[Hidden to Target mapping] [Hidden to Target mapping] [
|

i
i
|
Hidden to Target mapping] [Hidden to Target mapping] |

|

\
|
|
|
|
|

using using using using
1S tic Embed Weight Acoustic Embed Weight Semantic Embed Weight Acoustic Embed Weight
o A A P2 '\ A A
....... i — . — — * — — —. = o — —
Add & Norm Add & Norm

Multi -task
Transformer decoder layer

Joint
Transformer decoder layer

Fig. 2. Proposed models architectures

2.3. Transformer TTS

We also created a Transformer TTS [29]. Transformer TTS has ba-
sicaly same architecture with original Transformer except the pre-
process and post-process part. Transformer TTS utilizes Tacotron2
[30] pre-process and post-process part. Tacotron2 employs three lay-
ers CNN. We applied a convolutional neural network (CNN) to the
input text embeddings to handle the longer-term context in the input
character sequence. The original Transformer TTS model [29] using
the English phoneme sequence as input. But in this model, we input
the English character sequence like Tacotron2.

In the decoder part, the Mel spectrogram is first consumed by a
neural network that is composed of two fully connected layers with
ReLU activation. Since input the English characters have trainable
embeddings, their subspace is adaptive, and that of the Mel spectro-
grams is fixed. The decoder pre-net is responsible for projecting the
Mel spectrograms into the same subspace as the encoder character
embeddings to measure the similarity of a characters pronunciation
and its Mel frame pair. Thus the attention mechanism can work. We
also tried two fully connected layers without non-linear activation,
but no reasonable attention matrix was generated that aligns the hid-
den states of the encoder and the decoder [29]. We simply use the
Griffin-Lim algorithm [31] instead of WaveNet [32]. Ultimately we
only apply the embedding weight of the TTS encoder since improv-
ing the synthesized speech quality is not our main focus.

3. PROPOSED APPROACH: INCORPORATING
ACOUSTIC EMBEDDING INTO NMT

An encoder-decoder translation model maps an input sequence into
a fixed-dimension vector [1]. Such representations are sensitive to
the meaning of the sequence and accurate word order, but they are
insensitive to the replacement of the active voice with the passive
voice. In speech synthesis models, these representations are sensi-
tive to the replacement of the active voice with the passive voice but
insensitive to the meaning of the sequence.

These attributes create models that are robust to test sets and
generate natural sequences. On the other hand, the model sometimes
confuses output with similar meaning words and context like a “dog”
and “cat” and “may I” and “can 1.” In this research we map an input
sequence into vectors of intermediate representation that is sensitive
to both the sequences meaning and its pronunciation. We expect the

pronunciation information to help discriminate among words with
similar meanings and contexts in translation. We consider mean-
ing and pronunciation using speech as either input or output. But
end-to-end speech translation usually decreases the translation qual-
ity and preparing a natural speech parallel corpus is difficult. In this
research we used a pre-trained TTS embedding weight for the NMT
output layer. The transformer decoder has two modules that handle
the target word: a target word embedding layer and an output layer.
We treat these two as inverse mappings and tied their weights [33].
In this research, we tied a decoder embedding layer weight and a
decoder output layer weight. We added a new output layer where
the mapping decoder was hidden using TTS embedding weights that
were not updated during training. This model has two types of out-
put layers. The standard decoder output layer weight is tied to the
decoder embedding weight. This output layer maps decoder hid-
den to output for a sensitive sequence meaning. The output layer, is
tied with a TTS embedding weight, maps decoder hidden for sensi-
tive sequence pronunciations. We use these to output the results and
back-propagate the loss:

Onmt W nmtNdec; 5)
Otts = Witshdec; (6)
loss = (1)CE(Onmti y) + C E(Ottsi Y) (7)

Here hgec is a decoder hidden sequence, W nmt denotes a decoder
word embedding weight, and W ¢ts denotes the TTS encoder em-
bedding weight. In this work, W s is not update during training.
We only update W nm¢ throgh training. We using soft-max cross
entropy (CE) to individually calculate the loss for each output, and
is the weight for each loss. We call our proposed method multi-task
learning:

oy =
loss =

Onmt + Otts;

CE(oy;y):

®)
(©)]

We sum both NMT and TTS weight mapping. Since we do not
update the TTS embedding weight during training, the model up-
dates the NMT embedding weight scale based on the degree of
each layer’s contribution. If the output from the NMT embedding
scale greatly exceeds the output from the TTS embedding, then the
proposed model resembles a standard NMT. We call our proposed
method joint learning. We summary this section in Fig3.

Table 1. Translation results of Japanese-to-English

Source

Miruk wo mou sukoshi ku dasa i

Target

a little more milk please

Text-based NMT

let me have some more milk

Multi-tasknmT

a little more milk please

Multi-tasktTs

a little more milk please

Joint a little more milk please
Source Gyuniku to Chikin no dochira ga yoroshi i de su ka
Target which would you like beef or chicken ?

Text-based NMT

** beef or chicken ?

Multi-tasknmT

which would you like beef or chicken ?

Multi-tasktTts

which would you like beef or chicken ?

Joint which would you like beef or chicken ?
Source ii o tenki de su ne
Target it ’s a lovely day is n’t it ?

Text-based NMT | beautiful weather is n’t it ?

Multi-tasknmT | nice day isn’tit ?

Multi-tasktTs nice day is n’t it ?

Joint nice weather is n’t it ?
Source Zyo han shin wo kita e ta i nn de su kedo dono ma shin wo tuka e ba i de su ka
Target i ’d like to work on my upper torso which machines should i use ?
Text based NMT | i would like to build you medicine my upper body ?

Multi-tasknmT

i ’d like to work on my upper body what machine should i use ?

Multi-tasktTs

i ’d like to work on my upper body what machine should i use ?

Joint excuse me i 'd like to keep my upper body which machine should i use ?
Source san de su
Target three
Text-based NMT | three
Multi-tasknmT from three
Multi-tasktTs threeof us
Joint us three

4. EXPERIMENT

We conducted our experiments using a basic travel expression cor-
pus (BTEC) [34, 35]. The BTEC Japanese-English parallel cor-
pus consists of 480-k utterances. We removed the sentences that
have more than 100 characters and used this dataset to build a base-
line and proposed sub-words for the characters for the Transformer
NMT. Since the corresponding speech utterances for this text cor-
pus are unavailable, we used the Google text-to-speech synthesis!
to generate a speech corpus of the target language. We segmented
the speech utterances into multiple frames with a 50-ms window and
12:5-ms steps and extracted 80-dimension Mel-spectrogram features
using Librosa®. We also used these data to build a Transformer TTS.
Our proposed model uses this pre-trained TTS acoustic embedding
weight. Figure 4 illustrates the attention matrix of the pre-trained
transformer. Our TTS model shows clear monotonic shape attention
and achieves a 0:05 L1 loss of the TTS Mel-spectrogram from grand
truth decoding. The TTS module embedding layer is well trained
from these results.

Next we demonstrate our proposed translation performance and
compare it with the baseline text-based NMT model. We used Open-
NMT? to make a baseline and implemented our proposed model on
it. Here is a summary of baseline and our proposed models:

'Google TTS:https://pypi.python.org/pypi/gTTS
2Librosa: https://librosa.github.io/librosa/
30penNMT: http://opennmt.net/

Baseline Text-based NMT
This is a baseline text-to-text translation model.
Japanese (Fig. 1).

Input

Proposed Multi-tasknmT
Proposed model with multi-task learning and NMT embed-
ding weight output layer in test decoding (Fig. 2.2).

Proposed Multi-tasktTs
Proposed model with multi-task learning and TTS embedding
weight output layer in test decoding (Fig. 2.2).

Proposed Joint
Proposed model with joint learning and both output layer in
test decoding (Seq. 3).

All models performed a beam search (beam size is 5) algorithm
for character sequence auto-regressive decoding. Here we summary
the model parameters in Tables 2 and 3 2-3. The baseline text-based
NMT and our proposed model used the same settings, and the train-
able number parameters are the same between the proposed model
and the baseline.

Table 4 shows that our proposed method successfully improved
the BLEU scores by 5-points from the text-based NMT. For further
discussion of the model behaviors, Table 1 lists the translation re-
sults from each model. Each proposed model output a sentence
whose meaning was very similar to the meaning of the target sen-
tence. This means that each proposed model extracted the meaning
of the source sentence and mapped it to the decoder state. But in

