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ABSTRACT

Constructing automatic speech recognition (ASR) and text-
to-speech (TTS) for code-switching in a supervised fashion
poses a challenge since a large amount of code-switching
speech and the corresponding transcription are usually un-
available. The machine speech chain mechanism can be
utilized to achieve semi-supervised learning. The framework
enables ASR and TTS to assist each other when they receive
unpaired data since it allows them to infer the missing pair
and optimize the models with reconstruction loss. In this
study, we handle multiple language pairs of code-switching
by integrating language embeddings into the machine speech
chain and investigate whether the model can perform with
code-switching language pairs that are never explicitly seen
during training. Experimental results reveal that the proposed
approach improves the performance of the multilingual code-
switching language pairs with which the model was trained
and can also perform with unknown code-switching language
pairs without directly learning on it.

Index Terms— speech recognition, code-switching,
zero-shot, machine speech chain, language embedding

1. INTRODUCTION

Code-switching (CS), which is defined as when one speaker
uses two or more languages interchangeably within a conver-
sation, is a common phenomenon among bilingual conversa-
tions [1]. Code-switching has many varieties, but it can be
classified into two primary categories: inter-sentential (switch
is done at the sentence boundaries) and intra-sentential (shift
is done in the middle of a sentence). The standard ASR and
TTS are for monolingual data. Handling the code-switching
situation well for those systems is complicated since they
need to be able to deal with multilingual input with unpre-
dictable switching positions.

Several studies addressed ASR for a certain language pair
code-switching, such as Mandarin-English [2, 3, 4], English-
Malay [5], and Frisian-Dutch [6]. Also in TTS research,
approaches for Mandarin-English [7, 8], German-English
[9, 10] as well as Hindi-English, Telugu-English, Marathi-
English, and Tamil-English [11] CS have been investigated.

Going beyond a single-language pair of CS, White et al.
[12] investigated alternatives to model the acoustics for the
code-switching of multiple language pairs, and Imseng et
al. [13] proposed an approach to estimate the universal
phoneme posterior probabilities for mixed-language speech
recognition. Another alternative is to combine language iden-
tification (LID) and ASR by Seki et al. [14]. But again, these
frameworks were only applied for ASR and still relied on
supervised learning.

Recently, Guo et al. proposed semi-supervised acous-
tic and lexicon learning for an English-Mandarin CS ASR
[15]. Although it enabled semi-supervised learning, it only
focused on a single language pair for ASR tasks. Another
work by Nakayama et al. [16] then attempted to perform
semi-supervised learning for a Japanese-English CS ASR
and TTS by utilizing a machine speech chain mechanism
[17, 18, 19]. They trained ASR and TTS code-switching
with labeled monolingual data (supervised learning) and
performed a speech chain with only code-switching text or
speech (unsupervised learning). Unfortunately, this previous
work was also still designed only for a single language pair
code-switching.

In summary, most existing approaches suffer from one or
more of the following drawbacks: (a) just developed on ASR
or TTS; (b) only focused on a single language pair; (c) trained
in a supervised fashion that requires a large amount of paired
code-switching data, in which the speech and corresponding
transcription are usually unavailable. In this study, we ad-
dress the code-switching tasks of ASR and TTS on multiple
language pairs based on semi-supervised learning. Inspired
by previous work, we also attempted to utilize the machine
speech chain. But, in contrast, in this work, we handle multi-
ple language pairs of code-switching by integrating language
embeddings into the machine speech chain and investigate
whether the model can perform with code-switching language
pairs that are never explicitly seen during training. To aim
multilingual CS tasks, we also propose to perform multi-task
learning on ASR to learn the mapping from the speech input
to both the text transcription and the language information
using two softmax layers. The TTS then generates speech,
given the joint input of text, language, and speaker vectors.
We investigate the proposed approach on multilingual code-



switching language pairs with which the model was trained
as well as the code-switching language pairs that were never
explicitly seen during training.

2. MULTILINGUAL MACHINE SPEECH CHAIN

Inspired by the human speech chain [20], Tjandra et al. pre-
viously designed and constructed a machine speech chain
based on deep learning [17, 18, 19]. The framework consists
of a sequence-to-sequence ASR [21, 22] and a sequence-to-
sequence TTS [23] as well as a loop connection between
these two processes. The closed-loop architecture allows us
to train our model on the concatenation of both the labeled
and unlabeled data. Although ASR transcribes the unlabeled
speech features, TTS reconstructs the original speech wave-
form based on the text from ASR. In the opposite direction,
ASR also attempts to reconstruct the original text transcrip-
tion with the synthesized speech.

Figure 1 illustrates the differences among the followings:
(a) a basic machine speech chain for a monolingual ASR-
TTS [17] or a single-pair code-switching ASR-TTS [16];
(b) a multi-speaker machine speech chain for a monolingual
ASR-TTS [18]; and (c) our proposed multi-speaker multilin-
gual machine speech chain for a monolingual, multilingual,
and code-switching ASR-TTS. In this version, the machine
speech chain incorporates language recognition within ASR.
In other words, ASR performs multi-task learning for text
transcription and language information using two softmax
layers. We gave language information for each character by
using language ID. The language ID is “JA” for Japanese,
“EN” for English, “ZH” for Chinese, and “<unk>” for un-
known languages. The TTS then generates speech, given the
joint input of text, language, and speaker vector.

The training process is described as follows:

1. Separately supervised training ASR and TTS with
parallel speech-text monolingual data
We first separately train the ASR and TTS systems
with parallel speech-text of the monolingual corpora
from several languages shown in Fig. 2(a) using En-
glish (En), Japanese (Ja), and Chinese (Zh). Given
parallel speech and text (character and language label
sequences) of monolingual data (xMono,yMonoChr,
and yMonoLng), ASR generates sequence of char-
acter ŷMonoChr and language vectors ŷMonoLng with
teacher-forcing directly using ground-truth (yMonoChr)
and (yMonoLang) as decoder input and calculates
the sum of loss LMonoChr

ASR (ŷMonoChr,yMonoChr)

and LMonoLng
ASR (ŷMonoLng,yMonoLang). TTS also

generates best predicted speech x̂Mono by teacher-
forcing using reference (xMono) from input character
(yMonoChr) and language (yMonoLang) vectors, and
we calculate the loss of LMono

TTS (x̂Mono,xMono). The
parameters are then updated with gradient descent op-

timization. Here we also train the speaker recognition
with Deep Speaker [24] (here denoted as “SPKREC”)
to produce speaker embedding vector z = SPKREC(x)
from speech input.

2. Simultaneous unsupervised training ASR-TTS in a
machine speech chain with unpaired CS data

(a) Given only CS text (TTS→ASR)
Since this process has only CS text [yCSChr,
and yCSLng] as input, we first generate a random
speaker vector z̃ = SPKREC(x̃) from SPKREC.
TTS learns to output speech waveform x̂CS from
the input sequence of [yCSChr, yCSLng], and
ASR then predicts the sequence of character and
language vectors [ŷCSChr,ŷCSLng], given the
synthesized speech.
Then the sum of losses LCSChr

ASR (ŷCSChr,yCSChr)

and LCSLng
ASR (ŷCSLng,yCSLng) can be computed

to update the ASR parameters (Fig. 2(b), left
side).

(b) Given only CS speech (ASR→TTS)
This process has only speech features xCS as
input. Given unlabeled CS speech features xCS ,
ASR generates sequence of character ŷCSChr

and language ŷCSLng vectors, and SPKREC pro-
vides a speaker-embedding vector z = SPKREC(x).
TTS then predicts speech waveform x̂CS , given
output character and language texts from ASR.
Then loss LCS

TTS(x̂
CS ,xCS) can be computed to

update the TTS parameters (Fig. 2(b), right side).

Finally, all of the losses, including the monolingual and
CS losses, are combined into a single loss while main-
taining the balance between the supervised monolin-
gual losses and unsupervised CS losses using hyperpa-
rameters (α, β):

L = α ∗ ((LMonoChr
ASR + LMonoLng

ASR ) + LMono
TTS ) (1)

+β ∗ ((LCSChr
ASR + LCSLng

ASR ) + LCS
TTS)

θASR = Optim(θASR,∇θASR
L) (2)

θTTS = Optim(θTTS ,∇θTTS
L), (3)

where if α > 0, we can keep using some portions of the
loss and the gradient provided by the paired training
set; if α = 0, we must completely learn new matters
with only CS speech or CS text.

3. EXPERIMENTAL SETUP

3.1. Monolingual and Code-Switching Corpora

We utilized the monolingual Ja, En, and Zh of the ATR
Basic Travel Expression Corpus (BTEC) [25, 26], which
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Fig. 1. Overview of machine speech chain models: (a) basic machine speech chain for monolingual ASR-TTS [17] or single-
pair code-switching ASR-TTS [16]; (b) multi-speaker machine speech chain for monolingual ASR-TTS [18]; (c) proposed
multi-speaker multilingual machine speech chain for monolingual, multilingual, and code-switching ASR-TTS.
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Fig. 2. Training process for CS machine speech chain: (a) separately supervised training ASR and TTS with parallel speech-text
monolingual data; (b) simultaneously unsupervised training ASR-TTS in a machine speech chain with unpaired CS data, given
only CS text (left-side) or CS speech (right-side).

covers basic conversations in the travel domain. The sen-
tences are parallel translations among the three languages.
For each language, we selected sentences that contain at
least two phrases (separated with commas) and randomly se-
lected 25k sentences for training (This set will be later called
“Ja25k+En25k+Zh25k”), 500 for the development set, and
another 500 for the test set. It corresponds to a total of about
85 hours. Here we artificially constructed code-switching
sentences from the selected monolingual BTEC sentences
by translating one phrase to the other languages (similar to
a previous approach [27]), resulting in En-Ja, Ja-Zh, Zh-En,
En-Fr, and Fr-Zh code-switching corpora (These sets will
be later called “EnJaCS”, “JaZhCS”, “ZhEnCS”, “EnFrCS”,
and “FrZhCS”). The switching position was chosen at the
first comma.

For the English text, we converted all of the sentences
into lowercase letters and removed all the punctuation marks
[,:?.]. For the Japanese text, we extracted the katakana char-
acters with a morphological analyzer called KyTea [28] and
converted them into alphabet letters using pykakasi [29]. For
the Chinese text, we applied pypinyin [30] to convert from

Chinese characters to pinyin. We have 26 letters (a-z), one
punctuation mark (-) for extending the sound of Japanese, and
three special tags (<s>, </s>, <spc>) that denote the start and
the end of sentences and the spaces between words.

Finally, all the text was synthesized to generate speech
using Google TTS [31]. The Japanese part was synthesized
by Japanese Google TTS, the English part was synthesized by
English Google TTS, and the Chinese part was synthesized by
Chinese (Mandarin) Google TTS.

Additionally, we also collected 1k utterances of natu-
ral text and speech CS. First, a Japanese-English bilingual
speaker, who uses code-switching in his daily life, created
natural code-switching text from BTEC Japanese-English
parallel corpus. After that, we recorded the reading speech
by another Japanese-English bilingual speaker. We divided
the collected 1k utterances to 0.2k as paired data, 0.7k as
unpaired data (This set will be later called “NatEnJaCS”),
and 0.1k as test data (This set will be later called “Natural
EnJaCS”). We also splitted the paired data to part of Japanese
and part of English to use as monolingual data, which data
we denote as “NatJa” and “NatEn”.



3.2. Feature Extraction

All the raw speech waveforms were represented at a 16-kHz
sampling rate. For the speech features, we used a log magni-
tude spectrogram extracted by the short-time Fourier trans-
form (STFT) from the Librosa library [32]. First, we ap-
plied wave-normalization (scaling raw wave signals into the
range [-1, 1]) per utterance, followed by pre-emphasis (0.97),
and extracted the spectrogram with an STFT, a 50-ms frame
length, a 12.5-ms frameshift, and a 2048 point FFT. We trans-
formed all of the speech utterances into log-scale and normal-
ized each feature into 0 mean and unit variances. Our final
set included 40 dims log Mel-spectrogram features and 1025
dims log magnitude spectrograms.

3.3. ASR and TTS Systems

Our ASR system is an attention-based encoder-decoder
model [21] that consists of three stacked BiLSTM encoders,
a single layer LSTM, and multilayer perceptron (MLP)-based
attention [33] components. The log-scaled Mel-spectrogram
were fed into a fully connected layer and transformed by a
LeakyReLU (l = 1e−2) [34] activation function. This model
doesn’t need any language model or any word dictionary.
For the TTS system, our model is based on a sequence-to-
sequence TTS (Tacotron) [23]. Although its hyperparame-
ters are almost the same as the original Tacotron, we used
LeakyReLU instead of ReLU. Also on the encoder, although
the original Tacotron uses 16 sets of convolutional filters
in the CBHG module, we used eight sets of different filter
banks to reduce the GPU memory consumption. The encoder
also has a language-embedding layer as well as a character-
embedding layer. The decoder changed the GRU into two
stacked LSTMs with 256 hidden units. Since the original
Tacotron is a single speaker model, it cannot deal with multi-
speakers. So we used a DNN-based speaker recognition
model called Deep Speaker [24] to generate a speaker vector
and incorporated a speaker-embedding layer into Tacotron.

As described before, we first separately trained the ASR
and TTS systems with parallel speech-text of monolingual
data (supervised learning). After that, we performed a ma-
chine speech chain with only CS text or CS speech (unsuper-
vised learning). Both the ASR and TTS models were imple-
mented with the PyTorch library [35]. We trained the Deep
Speaker model with all of the speech utterances, including
monolingual Japanese, English, Chinese and code-switching.
For the α and β hyperparameters that scale the loss between
the supervised (paralleled) and unsupervised (unparalleled)
loss, we used the same α = 0.5, β = 1 for most of our
experiments.

4. EXPERIMENT RESULTS

4.1. ASR Evaluation

First, we investigated the impact of the additional language
recognition on the baseline system. This is to confirm whether
that additional information will not destruct the original qual-
ity. The baseline is an ASR Ja25k+En25k+Zh25k that was
trained with a 25k monolingual Ja, a 25k monolingual En,
a 25k monolingual Zh speech, and the corresponding text
(character transcription and language information). Table 1
compares the performance (in CER) between the baselines
that utilized the single-task ASR that only generates character
transcription and a multi-task ASR that generates both charac-
ter transcription and language information. The results show
that an additional task on language recognition could even
help the ASR performance. Therefore, we utilize the multi-
task ASR model for further experiments with CS data.

Table 1. Comparison performance (in CER) of baselines be-
tween single-task and multi-task SR

Train:Ja25k+En25k+Zh25k Ja En Zh
Single-task ASR [chr] 8.83% 9.08% 5.75%
Multi-task ASR [chr,lng] 8.85% 8.48% 5.11%

Next, we investigated our proposed approach on the mul-
tilingual code-switching language pairs with which the model
was trained as well as the code-switching language pairs that
were never explicitly seen during training. Please note that, in
this research, the idea is not to show that the proposed method
can outperform the baseline that only trained with a small set
of data, but to learn whether we can improve the performance
when only unpaired data is available. Specifically, our aim is
to investigate whether there is still possible to improve the
performance when paired data is not available and the CS
language-pair has not been seen during training.

After separately training ASR and TTS using a parallel
speech-text monolingual Ja25k, En25k, and Zh25k, we per-
formed a speech chain using two language pairs of CS on
three different setups: (1) EnJaCS10k+JaZhCS10k: an En-
JaCS 10k and JaZhCS 10k training set with ZhEnCS as a
zero-shot target. (2) EnJaCS10k+ZhEnCS10k: a EnJaCS
10k and ZhEnCS 10k training set with a JaZhCS as a zero-
shot target. (3) EnZhCS10k+ZhJaCS10k: an EnZhCS 10k
and ZhJaCS 10k training set with EnJaCS as a zero-shot tar-
get. As shown in Table 2, just by using the unpaired CS
data and letting ASR and TTS teach each other, our proposed
speech-chain model improved the ASR system in the multi-
lingual CS test set, which includes not only the CS language
pairs that were used during the speech chain training but also
an unknown language pair compared with a baseline ASR
system.

Additionally, we also investigated whether our proposed



Table 2. CER of proposed machine speech chain with language embedding on zero-shot CS and known language (The bold
figures indicate a zero-shot training).

Monolingual Code-switching
Ja En Zh EnJaCS JaZhCS ZhEnCS

Baseline: Supervised training on monolingual data only
Ja25k+En25k+Zh25k (paired) 8.85% 8.48% 5.11% 14.06% 16.91% 16.04%

Proposed Machine Speech chain: Semi-supervised training on two CS data
+EnJaCS10k+JaZhCS10k (unpaired) 9.18% 12.71% 5.93% 11.56% 8.31% 10.52%
+EnJaCS10k+ZhEnCS10k (unpaired) 8.93% 12.34% 5.67% 11.18% 9.21% 9.71%
+ZhEnCS10k+JaZhCS10k (unpaired) 8.91% 14.45% 6.08% 11.85% 10.40% 11.29%

Topline: Supervised training on CS data
+EnJaCS10k+JaZhCS10k (paired) 10.18% 12.32% 7.93% 8.94% 6.70% 8.09%
+EnJaCS10k+ZhEnCS10k (paired) 11.04% 10.91% 7.48% 10.81% 7.26% 8.07%
+ZhEnCS10k+JaZhCS10k (paired) 10.98% 11.57% 7.22% 10.34% 7.72% 7.98%
+EnJaCS10k+JaZhCS10k+ZhEnCS10k
(paired)

10.48% 10.43% 6.88% 8.68% 6.98% 8.05%

Table 3. CER of proposed machine speech chain with language embedding on zero-shot CS and known language and natural
CS (The bold figures indicate a zero-shot training).

Monolingual Code-switching
Ja En Zh EnJaCS JaZhCS ZhEnCS Natural

EnJaCS
Baseline: Supervised training on monolingual data only

Ja25k+En25k+Zh25k plus
NatJa0.2k+NatEn0.2k (paired)

15.22% 17.14% 6.36% 20.23% 21.23% 19.49% 66.11%

Proposed Machine Speech chain: Semi-supervised training on two CS data and one natural CS data
+EnJaCS10k+JaZhCS10k plus
NatEnJaCS0.7K (unpaired)

15.68% 18.26% 6.69% 12.29% 15.57% 15.64% 29.99%

Topline: Supervised training on two CS data and one natural CS data
+EnJaCS10k+JaZhCS10k plus
NatEnJaCS0.7K (paired)

16.66% 18.41% 8.09% 8.70% 6.98% 8.94% 22.51%

speech-chain model could also improve the ASR system in
the multilingual CS test set with natural speech CS. The nat-
ural CS sentences tend to be more complex than the synthetic
one because CS speakers may switch twice or more within a
single utterance. Furthermore, we only have limited available
1k natural CS data. As can be seen from Table 3, the perfor-
mances were worse than using only synthetic data. Neverthe-
less, the results can still reveal that our proposed speech-chain
model could also improve the ASR system in the multilingual
CS test set with natural CS.

Furthermore, we also investigated the performance of
unseen CS language pairs of French and Chinese (FrZhCS)
given in the situation where Fr language is unknown and
monolingual Fr paired data is not available at all. Thus, the
language recognition would not have the chance to identify
the language, and the system did not have the chance to learn
French in the supervised learning or never been taught the
association of the French speech and the ground-truth of the
corresponding transcription. Table 4 shows the ASR perfor-
mance. As can be seen, even the Fr language is unknown and

any paired data of monolingual Fr is unavailable, through a
multilingual machine speech chain mechanism that learns un-
paired EnFrCS data, we can still improve the performance on
FrZhCS test data. Surprisingly, the topline CER with paired
training data got worse than the unpaired counterpart. As we
challenged one-shot learning, although the topline model was
trained with paired training data, it only had the paired data of
EnJaCS+JaZhCS+EnFrCS data. It was never be trained with
the target FrZhCS. The results might indicate that as non-
target CS training data become more massive, the mismatch
increase and the performance becomes worse. In any case,
these results also reveal that the proposed framework can still
improve the performance even for zero-shot CS that includes
unknown language.

4.2. TTS Evaluation

We performed an AB preference subjective evaluation be-
tween the speech sentence pairs generated by the proposed CS
that has language-embedding [yCSChr, yCSLng] in the input



Table 4. CER of the proposed machine speech chain with
language embedding on zero-shot CS Fr language is unknown
and monolingual Fr paired data is not available at all (no su-
pervised learning for Fr).

Model Train data FrZhCS
Baseline Ja25k+En25k+Zh25k (paired) 36.30%
Proposed +EnJaCS10k+JaZhCS10k+EnFrCS5k

(unpaired)
28.95%

+EnJaCS10k+JaZhCS10k+EnFrCS10k
(unpaired)

26.77%

Topline +EnJaCS10k+JaZhCS10k+EnFrCS5k
(paired)

22.42%

+EnJaCS10k+JaZhCS10k+EnFrCS10k
(paired)

31.27%

and a CS that does not (only [yCSChr, yCSLng]). 10 bilin-
gual speakers for each language pair participated in subjec-
tive tests. For each paired test stimuli in the overall evalua-
tion, the subjects were shown the transcription and listened
to two speech utterances, and were asked to choose from the
following answers in terms of being more native or not: a)
the former is better; b) the latter is better; c) cannot tell any
difference or which is better.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Zh-Ja CS

Ja-Zh CS

En-Ja CS

Without LngEmb Same Proposed (With LngEmb)

Fig. 3. AB preference subjective evaluation between CS TTS
with language embedding and without

We selected 20 generated speech utterances from the test
set and randomized the order of the stimuli presentation of the
sentences. The results (Fig. 3) indicate that although incor-
porating language recognition complicates multi-task ASR, it
helps TTS essentially maintain the synthesis speech quality,
especially on the switch position between two languages.

5. RELATED WORKS

Zero-shot learning originally refers to multiclass classifica-
tion problems in the field of computer vision that recognizes
objects whose instances may not have appeared in the train-
ing data [36]. Some new zero-shot learning methods were

mainly proposed in previously summarized image processing
researches [37].

In neural machine translation, zero-shot translation has
been studied, where the translation between the unknown lan-
guage pairs that have never seen in the training set can be
conducted [38]. One experiment demonstrated that two trans-
lation models that were trained with Portuguese (Pt)-English
(En) and English (En)-Spanish (Es) can generate reasonable
translation quality on Portuguese (Pt)-Spanish (Es) without
ever being seen during training.

Unfortunately, since little work has addressed code-
switching ASR and TTS, our study contributes to zero-shot
code-switching ASR and TTS researches.

6. CONCLUSION

We introduced a zero-shot code-switching ASR and TTS
with a multilingual machine speech chain. The previous
research utilized a machine speech chain and achieved semi-
supervised learning of ASR and TTS by optimizing the pa-
rameters from back-propagating errors through the whole
system. However, that system was designed only for the
code-switching of a single language pair. In this study, we
expanded the model to handle multilingual code-switching
by integrating a neural language that was embedded in the
machine speech chain. We also investigated whether it can
perform on code-switching language pairs that were never
explicitly seen during training. Experimental results reveal
that a single machine speech chain architecture that inte-
grated the language embedding improved the performance of
the multilingual code-switching language pairs with which
the model was trained and performed well on the unknown
language set of code-switching without directly learning that
code-switching language set.

7. ACKNOWLEDGEMENT

Part of this work is supported by JSPS KAKAENHI Grant
Numbers JP17H06101 and JP17K00237 as well as NII CRIS
Contract Research 2019 and Google AI Focused Research
Awards Program.

8. REFERENCES

[1] Lesley Milroy and Pieter Muysken, One speaker, two
languages: Cross-disciplinary perspectives on code-
switching, Cambridge University Press, 1995.

[2] Ngoc Thang Vu, Dau-Cheng Lyu, Jochen Weiner, Do-
minic Telaar, Tim Schlippe, Fabian Blaicher, Eng-Siong
Chng, Tanja Schultz, and Haizhou Li, “A first speech
recognition system for Mandarin-English code-switch
conversational speech,” in Proc. of ICASSP, Kyoto,
Japan, 2012, pp. 4889–4892.



[3] Ne Luo, Dongwei Jiang, Shuaijiang Zhao, Caixia Gong,
Wei Zou, and Xiangang Li, “Towards end-to-end
code-switching speech recognition,” arXiv preprint
arXiv:1810.13091, 2018.

[4] Changhao Shan, Chao Weng, Guangsen Wang, Dan Su,
Min Luo, Dong Yu, and Lei Xie, “Investigating end-
to-end speech recognition for mandarin-english code-
switching,” in Proc. of ICASSP. IEEE, 2019, pp. 6056–
6060.

[5] Basem H.A. Ahmed and Tien-Ping Tan, “Automatic
speech recognition of code switching speech using 1-
best rescoring,” in Proc. of International Conference
on Asian Language Processing (IALP), Hanoi, Vietnam,
2012, pp. 137–140.

[6] Emre Yilmaz, Henkvan den Heuvel, and David van
Leeuwen, “Investigating bilingual deep neural networks
for automatic recognition of code-switching Frisian
speech,” Procedia Computer Science, vol. 81, pp. 159 –
166, 2016, SLTU - The 5th Workshop on Spoken Lan-
guage Technologies for Under-resourced languages.

[7] Min Chu, Hu Peng, Yong Zhao, Zhengyu Niu, and Eric
Chang, “Microsoft Mulan-a bilingual TTS system,” in
Proc. of ICASSP, Hong Kong, China, 2003, pp. 264–
267.

[8] Hui Liang, Yao Qian, and Frank K. Soong, “Mi-
crosoft Mulan-a bilingual TTS system,” in Proc. of
ISCA Speech Synthesis Workshop (SSW6), Bonn, Ger-
many, 2007, pp. 137–142.

[9] Sunayana Sitaram and Alan W. Black, “Speech synthe-
sis of code-mixed text,” in Proc. of LREC, Miyazaki,
Japan, 2016, pp. 3422–3428.

[10] Sunayana Sitaram, SaiKrishna Rallabandi, Shruti Rijh-
wani, and Alan W. Black, “Experiments with cross-
lingual systems for synthesis of code-mixed text,” in
Proc. of ISCA Speech Synthesis Workshop (SSW9), Sun-
nyvale, CA, USA, 2016.

[11] SaiKrishna Rallabandi and Alan W. Black, “On building
mixed lingual speech synthesis systems,” Stockholm,
Sweden, 2017, pp. 52–56.

[12] Christopher M. White, Sanjeev Khudanpur, and
James K. Baker, “An investigation of acoustic models
for multilingual code switching,” in Proc. of INTER-
SPEECH, Brisbane, Australia, 2008, pp. 2691–2694.

[13] David Imseng, Herve Bourlard, Mathew Magimai-
Doss, and John Dines, “Language dependent univer-
sal phoneme posterior estimation for mixed language
speech recognition,” in Prof. of ICASSP, Prague, Czech
Republic, 2011, pp. 5012–5015.

[14] Hiroshi Seki, Shinji Watanabe, Takaaki Hori,
Jonathan Le Roux, and John R. Hershey, “An
end-to-end language-tracking speech recognizer for
mixed-language speech,” Calgary, Canada, 2018.

[15] Pengcheng Guo, Haihua Xu, Lei Xie, and Eng Siong
Chng, “Study of semi-supervised approaches to im-
proving english-mandarin code-switching speech recog-
nition,” arXiv preprint arXiv:1806.06200, 2018.

[16] Sahoko Nakayama, Andros Tjandra, Sakriani Sakti, and
Satoshi Nakamura, “Speech chain for semi-supervised
learning of japanese-english code-switching asr and tts,”
in Proc. of IEEE Spoken Language Technology (SLT),
Athens, Greece, 2018.

[17] Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura,
“Listening while speaking: Speech chain by deep learn-
ing,” in Proc. of ASRU, Okinawa, Japan, 2017, pp. 301–
308.

[18] Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura,
“Machine speech chain with one-shot speaker adapta-
tion,” in Proc. of INTERSPEECH, Hyderabad, India,
2018.

[19] Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura,
“End-to-end feedback loss in speech chain framework
via straight-through estimator,” in Proc. of ICASSP,
Brighton, UK, 2019, p. to appear.

[20] Peter B. Denes and Elliot N. Pinson, The Speech Chain:
The Physics And Biology Of Spoken Language, Anchor
books. Worth Publishers, 1993.

[21] Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk,
Philemon Brakel, and Yoshua Bengio, “End-to-end
attention-based large vocabulary speech recognition,” in
Proc. of ICASSP. IEEE, 2016, pp. 4945–4949.

[22] William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol
Vinyals, “Listen, attend and spell: a neural network
for large vocabulary conversational speech recognition,”
in Proc. of ICASSP, Shanghai, China, 2016, pp. 4960–
4964.

[23] Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui
Wu, Ron J. Weiss, Navdeep Jaitly, Zongheng Yang,
Ying Xiao, Zhifeng Chen, Samy Bengio, Quoc Le, Yan-
nis Agiomyrgiannakis, Rob Clark, and Rif A. Saurous,
“Tacotron: A fully end-to-end text-to-speech synthesis
model,” in Proc. of INTERSPEECH, Stockholm, Swe-
den, 2017, pp. 4006–4010.

[24] Chao Li, Xiaokong Ma, Bing Jiang, Xiangang Li,
Xuewei Zhang, Xiao Liu, Ying Cao, Ajay Kannan,
and Zhenyao Zhu, “Deep speaker: an end-to-end
neural speaker embedding system,” arXiv preprint
arXiv:1705.02304, 2017.



[25] Toshiyuki Takezawa, Genichiro Kikui, Masahide
Mizushima, and Eiichiro Sumita, “Multilingual spo-
ken language corpus development for communication
research,” Proc. of the Association for Computational
Linguistics and Chinese Language Processing, vol. 12,
no. 3, pp. 303–324, 2007.

[26] Genichiro Kikui, Eiichiro Sumita, Toshiyuki Takezawa,
and Seiichi Yamamoto, “Creating corpora for speech-
to-speech translation,” in Proc. of EUROSPEECH,
Geneva, Switzerland, 2003, pp. 381–384.

[27] Sahoko Nakayama, Takatomo Kano, Quoc Truong Do,
Sakriani Sakti, and Satoshi Nakamura, “Japanese-
english code-switching speech data construction,” in
Proc. of Oriental COCOSDA, Miyazaki, Japan, 2018.

[28] Graham Neubig, Yosuke Nakata, and Shinsuke Mori,
“Pointwise prediction for robust, adaptable japanese
morphological analysis,” in Proc. of the 49th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies: short papers-
Volume 2. Association for Computational Linguistics,
2011, pp. 529–533.

[29] Hiroshi Miura, “pykakasi – kakasi library in python,”
https://pypi.org/project/pykakasi/.

[30] Huang Huang, “pypinyin – pinyin library in python,”
https://pypi.org/project/pypinyin/.

[31] Pierre Nicolas Durette, “gTTS – Google Text-to-
Speech,” https://pypi.org/project/gTTS/.

[32] Brian McFee, Matt McVicar, Oriol Nieto,
Stefan Balke, Carl Thome, Dawen Liang,
Eric Battenberg, Josh Moore, Rachel Bittner,
Ryuichi Yamamoto, et al., “librosa 0.5.0,”
https://librosa.github.io/librosa/0.5.0/index.html,
2017.

[33] Minh-Thang Luong, Hieu Pham, and Christopher D
Manning, “Effective approaches to attention-
based neural machine translation,” arXiv preprint
arXiv:1508.04025, 2015.

[34] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li,
“Empirical evaluation of rectified activations in convo-
lutional network,” arXiv preprint arXiv:1505.00853,
2015.

[35] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer, “Au-
tomatic differentiation in pytorch,” 2017.

[36] Hugo Larochelle, Dumitru Erhan, and Yoshua Bengio,
“Zero-data learning of new tasks.,” in Proc. of AAAI,
2008, vol. 1, p. 3.

[37] Yongqin Xian, Christoph H. Lampert, Bernt Schiele,
and Zeynep Akata, “Zero-shot learning: the good, the
bad and the ugly,” arXiv preprint arXiv:1703.04394,
2017.

[38] Melvin Johnson, Mike Schuster, Quoc V Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat, Fer-
nanda Viégas, Martin Wattenberg, Greg Corrado, et al.,
“Google’s multilingual neural machine translation sys-
tem: Enabling zero-shot translation,” Transactions of
the Association for Computational Linguistics, vol. 5,
pp. 339–351, 2017.


