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Background
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Bilingualism

3

Bilingual speakers have increased in Japan
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Code-switching (CS) plays an important role in bilingualism [McSwan, 2000].
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CS Definition

Speakers switch languages within a conversation.

 Word-level CS:

国会が the Equal Employment Opportunity Law に罰則を

設けなかったので、空文だという意見があります。

(As the Diet did not put any teeth into the Equal Employment Opportunity 
Law, some are of the opinion that it is a mere scrap of paper.)

 Phrase-level CS:

If I could make a suggestion, この議題についての討議を昼食までに終
えて頂ければと思いますが。

(If I make a suggestion, would you finish discussing this subject by lunch 
time?)
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CS Coverage of This Study

The definition of what constitutes CS is controversial.

5

 Are loanwords word-level CS? 

中間言語を使った時のメリットに何があるか？

(What is the merit of using an interlingua?)

 Are quotations phrase-level CS?

What do you think of the Japanese saying, "うそつきは泥棒の

始まり"?

(What do you think of the Japanese saying, "Show me a liar and I'll show you a 
thief"?)

Theoretically, they may not be CS.

But in this study we aim to properly handle as many cases as possible.

Therefore, we will try to handle these cases as well.
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How Code Switching Occurs

Proficiency-driven CS

• A speaker is competent in both languages

• Easily able to switch from one language to another. 

Deficiency-driven CS

• A speaker is lack of competency of one language

• Go back to another language. 

6

As the data of deficiency-driven CS has not been obtained yet, we only 
handle the proficiency-driven case in this work.
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CS Challenges For ASR 

“これはstill waterですか？”

 Standard Automatic Speech Recognition (ASR) is monolingual 

 Challenge with CS: need to handle multilingual input

ASR?
Output text

Japanese
ASR

“こんにちは”

English
ASR

“Hello”

Japanese

English
Japanese

(Hello)

(Is this still water?)
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Previous Works

8

ASR
“父の手術には there is a 
high degree of risk.”

⇒ Common aim: merely for transcribing CS-speech into CS-text

Monolingual 
speakers

CS-speech         CS-text

Several works have constructed CS ASR.
 Mandarin-English CS with phone merging and language 

identification [Vu et al., 2012]

 Frisian-Dutch CS with bilingual deep neural networks [Yilmaz et al., 

2012] 

(there is a high degree of risk in 
my father's operation)
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Proposed Approaches
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Goal
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ASR
“there is a high degree of

risk in my father's operation.”
Monolingual 

speakers

Support monolingual speakers trying to understand CS speakers

CS-speech         Monolingual-text
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Approaches

11

1. Cascade approaches

2. Direct approaches
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1-2.    CS2CS ASR + CS2Mono NMT

2-1.    CS2Mono ASR with single-task learning
2-2.    CS2Mono ASR with multi-task learning
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1. Cascade Approaches

12

1-1.       Cascade CS2CS ASR + Mono-recovery BERT

1-2.       Cascade CS2CS ASR + CS2Mono NMT*

*Neural Machine Translation (NMT)
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2. Direct Approaches
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2-1.      Direct CS2Mono ASR with single-task learning

2-2.      Direct CS2Mono ASR with multi-task learning

CS Ja-En 

ASR
MonoEn

Text

CS Ja-En 
Text

MonoEn
Text

CS Ja-En 

ASR
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1. Cascade Approaches
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1-1.       Cascade CS2CS ASR + Mono-recovery BERT

1-2.       Cascade CS2CS ASR + CS2Mono NMT*

*Neural Machine Translation (NMT)
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1-1. Mono-Recovery BERT

15

Mono-recovery BERT
 Masks the 2nd language
 Recovers complete sentence of the 1st language

BERT: bidirectional language model [Devlin et al., 2019]

Source あのね，Charles may be a bad husband, but He’s 心の温かい
人なのよ.
(you know, Charles may be a bad husband, but He’s a warm-heated 

person.)

Mask [MASK] [MASK] [MASK], Charles may be a bad husband, but 
He’s [MASK] [MASK] [MASK].

Label you know [PAD], Charles may be a bad husband, but He’s a 
warm-heated person.

Target you know, Charles may be a bad husband, but He’s a warm-
heated person.
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1-1. Mono-Recovery BERT Architecture
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 Based on the BERTBase model
• Use multi-layer bidirectional Transformer [Vaswani et al., 2017] 

please take a [MASK] for meInput

Token
Embeddings Eplease Etake Ea

E[MASK] Efor Eme

Position
Embeddings

E0
E1 E2 E3 E4 E5

Trm Trm Trm Trm Trm Trm

Trm Trm Trm Trm Trm Trm

please take a picture for me

Bidirectional
Transformer

Output
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Overview of Cascade BERT

17

Given CS speech, we performs an ASR and produces CS text.

Then, we utilizes BERT to recover the monolingual text.

Input

please take a 写真 for me
Output 
Text

ASR

please take a [MASK] for me
Input
Text

BERT

please take a picture for me
Output 
Text

please take a 写真 for me
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1. Cascade Approaches
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1-1.       Cascade CS2CS ASR + Mono-recovery BERT

1-2.       Cascade CS2CS ASR + CS2Mono NMT*

*Neural Machine Translation (NMT)
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1-2. NMT Model
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 Sequence-to-sequence NMT with attention [Bahdanau et al., 2015]

please take a 写真 for meInput

Eplease Etake Ea E写真 Efor Eme

please take a picture for meOutput

Token
Embeddings

E E E E E E

BiLSTM

BiLSTM

BiLSTM

BiLSTM

BiLSTM

BiLSTM

BiLSTM

BiLSTM

BiLSTM

BiLSTM

BiLSTM

BiLSTM

Decoder LSTM LSTMLSTM LSTM LSTM LSTM

Attention

Token
Embeddings

Encoder
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Overview of Cascade NMT

20

Given CS speech, we performs an ASR and produces CS text.

Then, we utilizes NMT to translate from CS to monolingual text.
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2. Direct Approaches
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2-1.      Direct CS2Mono ASR with single-task learning

2-2.      Direct CS2Mono ASR with multi-task learning

CS Ja-En 

ASR
MonoEn

Text

CS Ja-En 
Text

MonoEn
Text

CS Ja-En 

ASR
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2-1. Direct Single-task Learning

22

 Sequence-to-sequence ASR with attention [Chan et al., 2016] [Tjandra et al., 2017]

Input

please take a picture for meOutput

E E E E E EToken
Embeddings

LSTM LSTMLSTM LSTM LSTM LSTM

Attention

Decoder

Encoder

please take a 写真 for me
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2. Direct Approaches
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2-1.      Direct CS2Mono ASR with single-task learning

2-2.      Direct CS2Mono ASR with multi-task learning

CS Ja-En 

ASR
MonoEn

Text

CS Ja-En 
Text

MonoEn
Text

CS Ja-En 

ASR
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2-2. Direct Multi-task Learning

24

 Multi-task learning improves learning efficiency with a shared encoder.
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Experiments
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Datasets

26

Artificial speech
CS text created by translating part of BTEC

Google TTS speech

Natural speech
CS text created by a CS user

Bilingual reading speech

Ja 
BTEC

En 
BTEC

CS User

Create

Another 
bilingual

1K
CS

speech

CS
text

Read

 All artificial CS : Train 50K, Test 500
 Mix natural CS : Train 50K, Test 500

All texts are segmented with BERT wordpiece tokenizer.
Wordpiece: subword units proposed to effectively deal with rare words  
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Cascade Text-to-Text Results

27

*𝑊𝑜𝑟𝑑𝑝𝑖𝑒𝑐𝑒 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒[%] =
𝑇𝑜𝑡𝑎𝑙 𝑊𝑜𝑟𝑑𝑝𝑖𝑒𝑐𝑒 𝐸𝑟𝑟𝑜𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑊𝑜𝑟𝑑𝑝𝑖𝑒𝑐𝑒𝑠 𝑖𝑛 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
× 100

 NMT model translated all artificial CS test utterances well, but the 
BERT model translated the mixed natural CS test utterances better. 

 Natural CS has more complex Japanese phrases, so the NMT task 
became more difficult.

Pre-experiment: check the difference between with ASR error and without

Wordpiece error rate* (%) of 
phrase-level CS on BERT model

Wordpiece error rate (%) of phrase-level 
CS on NMT model
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Artificial CS 
Test

Mix Natural 
CS Test

All Artificial CS 9.75 14.96 
Mix Natural CS 10.37 13.21 

Artificial CS 
Test

Mix Natural 
CS Test

All Artificial CS 7.56 16.34 

Mix Natural CS 6.34 19.16 
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Cascade Speech-to-Text Results

28

 However, in speech-to-text, NMT outperformed BERT.
 It seems a more difficult task for BERT because the ASR error increased 

the number of [MASK] tokens. 
 Therefore, we compare the cascade of ASR+NMT with other models.

Artificial CS 
Test

Mix Natural 
CS Test

All Artificial CS 17.80 47.98 
Mix Natural CS 18.62 29.22 

Wordpiece error rate (%) of phrase-level 
CS on cascade of ASR+BERT

Artificial CS 
Test

Mix Natural 
CS Test

All Artificial CS 11.07 43.52 

Mix Natural CS 11.32 25.29 

Wordpiece error rate (%) of phrase-level 
CS on cascade of ASR+NMT
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Cascade and Direct Results
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 Direct approaches seem to be better than the cascade model.
• They can learn speech information directly.

 Multi-task learning tends to have the best performance.
• It can improve learning efficiency and accuracy. 
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Conclusion

 The results reveal that 

• ASR error makes the task difficult for mono-recovery BERT.

• Direct approaches seem to be better than the cascade model.

• Multi-task learning tends to have the best performance.

 In the future, we will further investigate how natural the translation 
results are by conducting an evaluation by bilingual people. 

 As this paper is targeted only to proficiency-driven CS, we will handle 
deficiency-driven CS in the future.

30

1. Cascade CS2CS ASR + mono-recovery BERT
2. Cascade CS2CS ASR + CS2Mono NMT
3. Direct CS2Mono ASR with single-task learning
4. Direct CS2Mono ASR with multi-task learning

 We compared four ways to translate CS speech:
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