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Code-switching (CS) plays an important role in bilingualism [mcswan, 2000].
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Speakers switch languages within a conversation.

O Word-level CS: = :

[E = 7%" the Equal Employment Opportunity Law (ZE78l] %

RITED 272D T, BEXZEWLIERLYHY £,

(As the Diet did not put any teeth into the Equal Employment Opportunity
Law, some are of the opinion that it is a mere scrap of paper.)

O Phrase-level CS: ™ :

If I could make a suggestion, & DEFERBICDOWTDFZEZBRB L TITHK
ZATCIEITNITFEBRWNE T A,

(If | make a suggestion, would you finish discussing this subject by lunch
time?)
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The definition of what constitutes CS is controversial.

0 Are loanwords word-level CS?
FEEEZEA(FEST-FOXY v FIZRIAH B H ?

(What is the merit of using an interlingua?)

0 Are quotations phrase-level CS?

N
What do you think of the Japanese saying, " 5 Z 2 Z [ EED
BmE "
(What do you think of the Japanese saying, "Show me a liar and I'll show you a
thief"?)

Theoretically, they may not be CS.
But in this study we aim to properly handle as many cases as possible.

Therefore, we will try to handle these cases as well.
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How Code Switching Occurs
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OProficiency-driven CS
* A speaker is competent in both languages
* Easily able to switch from one language to another.

O Deficiency-driven CS
* A speaker is lack of competency of one language
* Go back to another language.

As the data of deficiency-driven CS has not been obtained yet, we only
handle the proficiency-driven case in this work.
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0 Standard Automatic Speech Recognition (ASR) is monolingual

M - IS - “Z AITHIE
+ ASR (Hello)

4$ English o .
nd ASR Hello

O Challenge with CS: need to handle multilingual input

“Z Pl still water T A 7
(Is this still water?)

| A i ] |
apanese
‘ I English Output text
. ?
Japanese > ASR: >
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Several works have constructed CS ASR.
0 Mandarin-English CS with phone merging and language

identification [vuetal, 2012]

O Frisian-Dutch CS with bilingual deep neural networks (vimaz etal.,
2012]

= Common aim: merely for transcribing CS-speech into CS-text

CS-speech CS-text ?
W ASR “RDFMTIZIL thereis a
high degree of risk.”
(there is a high degree of risk in Monolingual
my father's operation) speakers
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Proposed Approaches
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Goal

Support monolingual speakers trying to understand CS speakers
0?

CS-speech

CS-speech

CS-text
ASR “RDOFMICIL there is
a high degree of risk.”
(there is a high degree of risk in  Monolingual
speakers

my father's operation)

R &

Monolingual-text
v
. “there is a high degree of g
risk in my father's operation.”
Monolingual
speakers
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1. Cascade approaches
CS2CS ASR + Mono-recovery BERT

1-1.
1-2. CS2CS ASR + CS2Mono NMT
CS Ja-En v .
€5 Ja-En Post-processing onotn
| Text

“ "‘ ' ASR Text

2. Direct approaches
2-1. CS2Mono ASR with single-task learning

2-2. CS2Mono ASR with multi-task learning

CS Ja-En
MonoEn

" "‘ ' h ASR Text
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1-1. Cascade CS2CS ASR + Mono-recovery BERT

Post-processin
CS Ja-En P 5

. CS Ja-En Masked Recovery MonoEn
Text En Text (BERT) Text

1-2. Cascade CS2CS ASR + CS2Mono NMT*

Post-processing
CS Ja-En

CS Ja-En . MonoEn
W ASR Toxt [ Translation (NMT) Toxt

*Neural Machine Translation (NMT)
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2-1. Direct CS2Mono ASR with single-task learning
CS Ja-En

MonoEn
ASR Text

2-2. Direct CS2Mono ASR with multi-task learning

£ CS Ja-En
CS Ja-En Text
W ASR
MonoEn
Text

= | will describe these proposed models one by one

Copyright © Nara Institute of Science and Technology 2019. All Rights Reserved



\nstj
t:zt,,e
G
o
o
e
I
Qw
N
yooy®

1. Cascade Approaches

e

% &
P NAISTY @

=
=

1-1. Cascade CS2CS ASR + Mono-recovery BERT

Post-processin
CS Ja-En P 5

. CS Ja-En Masked Recovery MonoEn
Text En Text (BERT) Text

1-2. Cascade CS2CS ASR + CS2Mono NMT*

Post-processing
CS Ja-En

CS Ja-En . MonoEn
W ASR Toxt [ Translation (NMT) Toxt

*Neural Machine Translation (NMT)
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BERT: bidirectional language model (peviin et al, 2019

Mono-recovery BERT
0 Masks the 2nd language
0 Recovers complete sentence of the 1st language

Source H D13, Charles may be a bad husband, but He’s /L:D3& H Ly
IN/NOF S
(vou know, Charles may be a bad husband, but Hes a warm-heated
person.)

Mask [MASK] [MASK] [MASK], Charles may be a bad husband, but
He’s [MASK] [MASK] [MASK].

Label you know [PAD], Charles may be a bad husband, but He’s a
warm-heated person.

Target you know, Charles may be a bad husband, but He’s a warm-
heated person.
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0 Based on the BERTBase model
* Use multi-layer bidirectional Transformer [vaswani etal, 2017]

| >

Bidirectional b”.—;ﬁi - = ‘;.»
Transformer =—— ‘QVI I
?

o = /
*

Position
Embeddings 0 +1 2 + +4 +5
Token
Embeddings Eolease Etare E. Eimask) Efor Ene
R
N N
Input | please take a [MASK] \ | for me
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Output ;
Text plewe
BERT
please ake a or me
[l ; s : A4
Output | | | ! | |
Text please take a BEE for me

please take a 55 for me

Given CS speech, we performs an ASR and produces CS text.
Then, we utilizes BERT to recover the monolingual text.
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1-1. Cascade CS2CS ASR + Mono-recovery BERT

Post-processing
CS Ja-En

. CS Ja-En Masked Recovery MonoEn
Text En Text (BERT) Text

1-2. Cascade CS2CS ASR + CS2Mono NMT*

Post-processing
CS Ja-En

CS Ja-En . MonoEn
W ASR Toxt [ Translation (NMT) Toxt

*Neural Machine Translation (NMT)
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O Sequence-to-sequence NMT with attention [sahdanau etal, 2015

) o) (] ()
Decoder *
Token E E E E E E
Embeddings = — . > >
Attention
B|LSTM ]4—»[ B|LSTM ]<->[ B|LSTM ]<—>[ B|LSTM ]<->[ B|LSTM < BiLSTM ]
Encoder 1
[ B|LSTM H B|LSTM ]<->[ B|LSTM ]<->[ B|LSTM ]<->[ B|LSTM <> BiLSTM ]
Token *
Embeddings Eplease S = EE,E Efor -
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for me

please take a picture

please take
4 A

please take
*\N /V//V—V

Given CS speech, we performs an ASR and produces CS text.
Then, we utilizes NMT to translate from CS to monolingual text.
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2-1. Direct CS2Mono ASR with single-task learning
CS Ja-En

MonoEn
ASR Text

2-2. Direct CS2Mono ASR with multi-task learning

CS Ja-En
CS Ja-En Text
M ASR
MonoEn
Text
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O Sequence-to-sequence ASR with attention (chan et al., 2016] [Tjandra et al., 2017]

Output please take plcture

Token ' E E E E
Embeddings < < -v—— __—F : :
Attention (e=)
. Auention
[ BiLSTM ]0‘ BiLSTM }4—»‘ BiLSTM <« BilsT™ M BILSTM <> BiLSTM ]
J \_ 1 I J - I

E d > r ) c
neoaer [ BILSTM ]<+[ BILSTM ]4—»[ BILSTM '<» BILSTM ]4—»[ BILSTM |<» BiLSTM ]

Input
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2-1. Direct CS2Mono ASR with single-task learning

CS Ja-En

MonoEn
ASR Text

2-2. Direct CS2Mono ASR with multi-task learning
CS Ja-En
CS Ja-En Text
M ASR
MonoEn
Text
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O Multi-task learning improves learning efficiency with a shared encoder.

Code-switching Output Monolingual Output

[ please ] [ take ] [ a ][ ==} ] for

[ please ] [ take ] [ a ] [ picture ] [ for ][ me ]

Shared
Encoder

Input
Speech

BiLSTM ]
b I

BiLSTM ]
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[ BiLSTM H BiLSTM H BiLSTM <« BIiLSTM ]<->[ BiLSTM [«
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CS text created by translating part of BTEC

Artificial speech
Google TTS speech

CS text created by a CS user
Bilingual reading speech

Natural speech

=
7CS User Ja Another

BTEC S blllngual

.l-m —
text
En

BTEC

\_ I

O All artificial CS : Train 50K, Test 500
O Mix natural CS : Train 50K, Test 500

All texts are segmented with BERT wordpiece tokenizer.
Wordpiece: subword units proposed to effectively deal with rare words
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Pre-experiment: check the difference between with ASR error and without

Wordpiece error rate* (%) of

Wordpiece error rate (%) of phrase-level

CS on NMT model

phrase-level CS on BERT model
Artificial CS |Mix Natural Artificial CS |Mix Natural
Test CS Test Test CS Test
All Artificial CS 9.75 14.96 All Artificial CS 7.56 16.34
Mix Natural CS 10.37 13.21 Mix Natural CS 6.34 19.16

*Wordpiece Error Rate[%]

Total Wordpiece Errors

X 100

Number of Wordpieces in Reference

O NMT model translated all artificial CS test utterances well, but the
BERT model translated the mixed natural CS test utterances better.
O Natural CS has more complex Japanese phrases, so the NMT task

became more difficult.
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Cascade Speech-to-Text Results
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Wordpiece error rate (%) of phrase-level
CS on cascade of ASR+NMT

e

Wordpiece error rate (%) of phrase-level
CS on cascade of ASR+BERT
Artificial CS |Mix Natural Artificial CS |Mix Natural
Test CS Test Test CS Test
All Artificial CS 17.80 47.98 All Artificial CS 11.07 43.52
Mix Natural CS 18.62 29.22 Mix Natural CS 11.32 25.29

O However, in speech-to-text, NMT outperformed BERT.
O It seems a more difficult task for BERT because the ASR error increased

the number of [MASK] tokens.

O Therefore, we compare the cascade of ASR+NMT with other models.
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Cascade of ASR+NMT Direct ASR = Multi-task Learning

45.00

I
©
o
o

35.00

30.00

25.00

20.00

15.00

N
o
o
s}

Ul
o
S

I
I

Wordpiece Error Rate[%]

("

I
M

(HHmmmmmim

I
I

o
o
S

All artificial CS test Mix natural CS test All artificial CS test Mix natural CS test
All Artificial CS Model Mix Natural CS Model

0 Direct approaches seem to be better than the cascade model.
* They can learn speech information directly.

O Multi-task learning tends to have the best performance.
* It canimprove learning efficiency and accuracy.
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0 We compared four ways to translate CS speech:

Cascade CS2CS ASR + mono-recovery BERT
Cascade CS2CS ASR + CS2Mono NMT

Direct CS2Mono ASR with single-task learning
4. Direct CS2Mono ASR with multi-task learning

wnN e

O The results reveal that
* ASR error makes the task difficult for mono-recovery BERT.
* Direct approaches seem to be better than the cascade model.
* Multi-task learning tends to have the best performance.

O In the future, we will further investigate how natural the translation
results are by conducting an evaluation by bilingual people.

O As this paper is targeted only to proficiency-driven CS, we will handle
deficiency-driven CS in the future.
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