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Abstract—Code-switching (CS), a hallmark of worldwide bilin-
gual communities, refers to a strategy adopted by bilinguals (or
multilinguals) who mix two or more languages in a discourse
often with little change of interlocutor or topic. The units and
the locations of the switches may vary widely from single-word
switches to whole phrases (beyond the length of the loanword
units). Such phenomena pose challenges for spoken language
technologies, i.e., automatic speech recognition (ASR), since the
systems need to be able to handle the input in a multilingual
setting. Several works constructed a CS ASR on many different
language pairs. But the common aim of developing a CS ASR
is merely for transcribing CS-speech utterances into CS-text
sentences within a single individual. In contrast, in this study,
we address the situational context that happens during dialogs
between CS and non-CS (monolingual) speakers and support
monolingual speakers who want to understand CS speakers. We
construct a system that recognizes and translates from code-
switching speech to monolingual text. We investigated several
approaches, including a cascade of ASR and a neural machine
translation (NMT), a cascade of ASR and a deep bidirectional
language model (BERT), an ASR that directly outputs mono-
lingual transcriptions from CS speech, and multi-task learning.
Finally, we evaluate and discuss these four ways on a Japanese-
English CS to English monolingual task.

Index Terms—code-switching, speech recognition, speech and
text translation, BERT, multi-task learning

I. INTRODUCTION

The number of international travelers and residents in Japan
is monotonously increasing for such purposes as tourism, or
education. According to a survey of the Ministry of Health,
Labour and Welfare (MHLW), there were 21,457 international
marriages in Japan in 2017, an increase of about 3.5 times
in 40 years [1]. These changes affect how people communi-
cate. As a result, the phenomenon of Japanese-English code-
switching is becoming more frequent. Fotos et al. investigated
four hours of conversation of four bilingual children in Japan
who had either one or two American parents and observed 153
code-switchings [2]. Their reports revealed that some people
actually use Japanese-English CS in their everyday lives. This

phenomenon is challenging for spoken language technologies,
i.e., automatic speech recognition (ASR), since such systems
need to be able to handle the input in a multilingual setting.

Several works have constructed a CS ASR on many differ-
ent language pairs. White et al. [3] investigated alternatives
to model the acoustics for multilingual code-switching, and
Imseng et al. [4] proposed an approach to estimate universal
phoneme posterior probabilities for mixed-language speech
recognition. Vu et al. [5] focused on addressing speech recog-
nition of Chinese and English code-switching and proposed
approaches for phoneme merging in combination with discrim-
inative training as well as the integration of language identifi-
cation systems into decoding processes. Recently, Yilmaz et al.
[6] investigated the impact of bilingual deep neural networks
in the contexts of Frisian and Dutch CS. But the common aim
of developing a CS ASR is merely for transcribing CS-speech
utterances into CS-text sentences within the speech of a single
individual.

In contrast, in our study, we address the situational con-
text during dialogs between CS and non-CS (monolingual)
speakers to support monolingual speakers who are trying
to understand CS speakers. We construct a system that can
recognize code-switching speech and translate to monolingual
texts. CS translation is difficult since systems must detect
unpredictable switching positions and translate the broken
context as monolingual language. To address the problems,
we investigate several approaches, including a cascade of ASR
and neural machine translation (NMT), a cascade of ASR and
a deep bidirectional language model (BERT), an ASR that
directly outputs monolingual transcriptions from CS speech,
and multi-task learning. We evaluate and discuss these four
ways on a Japanese-English CS to English monolingual task.
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TABLE I
EXAMPLE OF MONOLINGUAL TEXT RECOVERY USING BERT-MASKED LM

Source CS あの ね , charles may be a bad husband , but he ’ s とても 心 の 温か い 人 な の よ .
Masked text [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] , charles may be a bad husband , but he ’ s

[MASK] [MASK] [MASK] [MASK] [MASK] [MASK] .
Label you know [PAD] [PAD] [PAD] [PAD], charles may be a bad husband, but he ’ s a very warm - hearted person .

Target English you know , charles may be a bad husband , but he ’ s a very warm - hearted person .

II. PROPOSED APPROACHES ON
CODE-SWITCHING-TO-MONOLINGUAL TASK

As described above, we investigated several approaches to
address communication problems across languages. First, we
offer solutions for the transformation of CS text to monolin-
gual text. After that, we transform CS speech to monolingual
text. The details are described below.

A. Code-switching Text to Monolingual Text

1) Mono-Recovery BERT:
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Fig. 1. Model architecture of BERT for code-switching-to-monolingual
recovery.

Traditional language models (LMs) are based on a single-
directional (left-to-right) approach that predicts the next word
given a sequence. Unfortunately, such an approach limits the
learning of context. BERT [7], which stands for Bidirectional
Encoder Representations from Transformers, is a language
understanding model that is bidirectionally (left-to-right and
right-to-left) trained on a massive text corpus. In contrast with
a traditional LM, BERT [7] has a deeper sense of language
context.

BERT [7] exploits the Transformer [8], an attention mech-
anism that bidirectionally learns the contextual relations be-
tween words (or sub-words) in a text. It has two training
phases: (1) pre-training with a generic dataset for language
representation and (2) fine-tuning on a specific task, such as
sentiment analysis [9], question answering [10], name entity
recognition [11], which is trained with a domain-specific
dataset. Ghazvininejad et al. also utilized conditional masked
language models like BERT for translation tasks by intro-
ducing a new mask-prediction algorithm [12] that repeatedly

selects the new positions of the mask tokens and predicts them
at each iteration.

Since we only need a language understanding model, we
just utilized a pre-trained BERT that leverages a masked
language model (Masked LM). By randomly masking some
tokens, we used other tokens to predict the masked tokens
to learn the representations. Unlike other approaches, BERT
predicted masked tokens instead of the entire input. Thus,
in our case, given a CS text that mixed words from the 1st
and 2nd languages, we masked unwanted words from the 2nd
language and used BERT to recover complete sentences in the
monolingual text of the 1st language. Since we do not know
exactly how many words should be replaced, we put several
[MASK] tokens in the positions of unwanted words. Then the
model is filled with tokens [PAD] if the original target token
size is smaller than the number of [MASK] tokens. Table I
shows an example of monolingual text recovery using a BERT-
masked LM.

The architecture uses a multi-layer bidirectional Trans-
former encoder [8]. We followed the hyperparameters and the
weight initialization scheme to the BERTBase model, which is
a publicly available BERT English model with 12 layers, 768
hidden sizes, 12 self-attention heads, and 110-M parameters,
and 30522 words [7]. The model architecture is depicted in
Fig. 1. It is simpler than the original BERT model [7]. We did
not have to use the special classification embeddings ([CLS]).
We also did not have to use the segmentation embeddings
for next sentence predictions. We also did not use a special
token ([SEP]) for separating sentences, and instead of that,
we separated sentences for each input.

2) CS2Mono NMT:
Here we perform neural machine translation (NMT) from

code-switching to a monolingual text. Despite extensive re-
search on MT, few works address the problem of CS transla-
tion. Sinha et al. [13] translated Hindi-English CS by isolating
each language. Since they used a traditional approach instead
of a neural MT, the context between language switchings
is unlikely to be considered. Recently, Google’s multilingual
neural machine translation system [14] produced CS examples
from monolingual sentences by weighting language selection
in a linear combination of embedding vectors. The system
simply outputs words randomly from different languages.

In contrast, we trained NMT to learn CS to monolingual text
translation on synthetic and natural data. Our NMT system is a
standard attention-based encoder-decoder model [15], [16]. In
the encoder, we fed the input text into a fully connected layer
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Fig. 2. Model architecture of NMT.

and transformed it by a LeakyReLU (l = 1e−2) [17] activation
function. The output goes through two stacked BiLSTM layers
with 256 hidden units for each direction (512 hidden units in
both directions). In the decoder, the characters were projected
by two LSTM layers with 512 hidden units. The decoder used
the attention module with scores calculated by a multilayer
perceptron [18]. The model architecture is depicted in Fig. 2.

B. Code-switching Speech to Monolingual Text

1) Cascade CS2CS ASR + Mono-recovery BERT:
Cascade ASR ⇒BERT
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Fig. 3. Model architecture of Cascade of ASR+BERT

Given code-switching speech, we first performed a neural
ASR and produced CS text. Then we utilized BERT to
recover the monolingual text. The cascade model architecture
is depicted in Fig. 3. The ASR system is an attention-
based encoder-decoder model [15], [16]. In the encoder, the
input features a log-scaled Mel-spectrogram fed into a fully
connected layer and transformed by a LeakyReLU (l = 1e−2)
[17] activation function. The output goes through three stacked
BiLSTM layers that have 256 hidden units for each direction
(512 hidden units in both directions). In the decoder, the
characters were fed into a 128-dims embedding layer and
projected by one LSTM layer with 512 hidden units. The
decoder uses the attention module and calculates the score with
a multilayer perceptron [18]. The ASR model architecture is

depicted in Fig. 5, and BERT is the same model described in
Section II-A1.

2) Cascade CS2CS ASR + CS2Mono NMT:

Input 
Speech

please take a 写真 for me
Output 
Text

Cascade ASR ⇒NMT

ASR

please take a 写真 for me
Input
Text

NMT

please take a picture for meOutput 
Text

please take a 写真 for me

Fig. 4. Model architecture of Cascade of ASR+NMT

Given CS speech, we first performed a neural ASR and
produced CS text. After that, we utilized NMT to translate
from CS to monolingual text. Similar to the cascade ASR
+ BERT, we used our attention-based encoder-decoder model.
The cascade model architecture is depicted in Fig. 4. The ASR
system has the same architecture as above, and NMT is the
same model described in Section II-A2.

3) Direct CS2Mono ASR with single-task learning:
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Fig. 5. Model architecture of ASR.

Here we trained an attention-based encoder-decoder ASR
to produce monolingual text given the CS speech. Although
this model uses the same architecture as the model described
in Fig. 5, it directly generates English transcriptions from CS
speech.

4) Direct CS2Mono ASR with multi-task learning:
Multi-task learning for speech translation has variations.

Typical multi-task learning [19] shares an encoder. Triangle
multi-task learning [20] provides information from a decoder
as well as a shared encoder. We adopted the typical multi-
task learning that has two decoders with shared an encoder.
The first decoder outputs CS text, and the second outputs
monolingual text. The shared encoder and ASR decoder have
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the same hyperparameters as the ASR model. The translation
decoder has the same hyperparameters as the decoder of the
NMT model. This model architecture is depicted in Fig. 6.

III. CODE-SWITCHING CORPORA

We constructed artificial code-switching and natural code-
switching. For those corpora, we utilized the monolingual
Japanese and English ATR Basic Travel Expression Corpus
(BTEC) [21], [22].

According to Bautista [23], code-switching is caused by
either proficiency-driven or deficiency-driven. The proficiency-
driven code-switching occurs when a speaker is competent
with both languages and easily able to switch from one
language to another. The deficiency-driven code-switching
occurs when a speaker is lack of competency of one language
and therefore has to go back to another language. As the data
of deficiency-driven code-switching has not been obtained yet,
we only handle the proficiency-driven code-switching in this
work.

Loanwords and quotations are not theoretically code-
switching, but we also handle loanwords and quotations within
a CS framework because we aim to recognize every word in
Japanese-English conversations.

All of the constructed sentences were tokenized. We ap-
plied a morphological analyzer, Mecab [24], on the Japanese
sentences and WordPiece tokenization [25] on the English
sentences.

In the following paragraphs, We explain the details about
how artificial code-switching and natural code-switching were
constructed.

A. Artificial code-switching

First, we chose the switching positions based on the result
of TreeTagger, a part-of-speech tagging tool [26].

• Word-level CS:

– One Word-Insertion (Insertion 1): Since the number
of target tokens in the switching position is 1, the
number of [MASK] tokens is also 1.

– Two Word Insertion: Since the number of target
tokens in the switching position is 2, the number
of [MASK] tokens is also 2.

• Phrase-level CS:
This corpus has artificial phrase-level code-switching that
is longer than the word-level CS. The number of target
tokens in a switching position is not determined. We used
four [MASK] tokens to predict the target tokens in each
switching position. If the length of the target tokens did
not reach 4, we used [PAD] tokens to fill in the remaining
labels

We chose a noun as insertion 1 in word-level code-switching,
and insertion 2 contains the tokens that come before insertion
1, which are mostly determiners. The phrase-level CS posi-
tion was chosen after the prepositions. Given the switching
positions, we translated them by machine translation and used
the neural machine translation model trained with the English
BTEC - Japanese BTEC. We only used the Google translation
API when the neural machine translation did not generate the
translation result well.

That corpus was divided 50-K sentences for a training set,
500 for a development set, and 500 for a test set.

All the text was synthesized using Google TTS.

B. Natural code-switching

A Japanese-English bilingual speaker made the CS text.
Although he lives in an English-speaking country, his parents
are Japanese. He also studied in Japan for one year. Therefore,
he often uses code-switching in his daily life. We gave him
1000 pairs of Japanese-English sentences from the BTEC from
which he made phrase-level CS sentences from pairs.

This corpus includes 0.9-K natural CS sentences for a
training set and 0.1K for a test set among all the artificial
CSs. The number of target tokens in a switching position was
not determined. We used six [MASK] tokens to predict the
target tokens in each switching position. If the length of the
target tokens did not reach 6, we used [PAD] tokens to fill in
the remaining labels.

We then asked a bilingual speaker to read and record the
constructed natural CS text. He recorded at his own residence,
but he did so in a quiet room.

We sampled all the speech waveforms at a sampling rate
of 16 kHz. For the speech features, we used a log magni-
tude spectrogram extracted by short-time Fourier transform
(STFT) from the Librosa library [27]. First, we applied wave-
normalization (scaling into a range [-1, 1]) per utterance, fol-
lowed by pre-emphasis (0.97), and extracted the spectrogram
with an STFT, a 50-ms frame length, a 12.5-ms frameshift, and
a 2048-point FFT. After we got the spectrogram, we took the
squared magnitude and extracted the Mel-spectrogram with a
Mel-filterbank with 40 filters.



IV. EXPERIMENTS

Table II shows the WordPiece error rate between the CS text
as the source text and the English text as the target text. Our
aim is to reduce the errors and produce language that more
closely resembles the monolingual English text.

TABLE II
WORDPIECE ERROR RATE (%) BETWEEN CS TEXT AS SOURCE TEXT AND

ENGLISH TEXT AS TARGET TEXT

Word-level CS
Artificial (Insertion 1) 6.73
Artificial (Insertion 2) 13.93

Phrase-level CS
Artificial 27.20

Mix Natural 34.96

A. Code-switching Text to Monolingual Text

First, we performed a CS text to a monolingual text.
Table III shows the WordPiece error rate of the word-level
CS on the BERT model and Table IV shows the WordPiece
error rate of the word-level CS on the NMT model. Regarding
the training data, BERT required less data than NMT. Because,
BERT needed only monolingual data with MASK, while NMT
needed parallel of CS and monolingual data. In the word-
level CS task, surprisingly BERT could perform better than
NMT in mismatched cases, while NMT performed better in
the matched case.

Next, Table V and Table VI show the WordPiece error rate
of phrase-level CS on the BERT model and the NMT model,
respectively. In the phrase-level CS task, the NMT model
translated all artificial CS tests well, but the BERT model
translated the natural CS test better. Natural CS generally
has more complex Japanese phrases as its source text, which
makes the translation task by NMT became complicated.
However, as the BERT model did not have any constrained on
the CS source text, its prediction could outperform the NMT
model.

TABLE III
WORDPIECE ERROR RATE (%) OF WORD-LEVEL CS ON BERT MODEL

Insertion 1 Test Insertion 2 Test
Insertion 1 3.31 11.20
Insertion 2 3.54 7.98

TABLE IV
WORDPIECE ERROR RATE (%) OF WORD-LEVEL CS ON NMT MODEL

Insertion 1 Test Insertion 2 Test
Insertion 1 2.02 13.76
Insertion 2 4.08 4.96

TABLE V
WORDPIECE ERROR RATE (%) OF PHRASE-LEVEL CS ON BERT MODEL

Artificial CS Test Mix Natural CS Test
All Artificial CS 9.75 14.96
Mix Natural CS 10.37 13.21

TABLE VI
WORDPIECE ERROR RATE (%) OF PHRASE-LEVEL CS ON NMT MODEL

Artificial CS Test Mix Natural CS Test
All Artificial CS 7.56 16.34
Mix Natural CS 6.34 19.16

B. Code-switching Speech to Monolingual Text

Table VII and Table VIII show the WordPiece error rate of
the phrase-level CS on the cascade of the ASR+BERT model
and the ASR+NMT model, respectively. Table IX and Table X
show the WordPiece error rate of the phrase-level CS on the
direct ASR model using single-task and multi-task learning,
respectively.

Among these models, the cascade models learned a much
simpler task than direct recognition. Furthermore, ASR+BERT
used less data than ASR+NMT. In this condition, it seems the
task became too hard for BERT, as the ASR error increased
the number of [MASK] tokens. Nevertheless, BERT still got
a close value to that of other models. In summary, it seems
that the more powerful model, the better the performance.

TABLE VII
WORDPIECE ERROR RATE (%) OF PHRASE-LEVEL CS ON CASCADE OF

ASR+BERT

Artificial CS Test Mix Natural CS Test
All artificial CS 17.80 47.98
Mix Natural CS 18.62 29.22

TABLE VIII
WORDPIECE ERROR RATE (%) OF PHRASE-LEVEL CS ON CASCADE OF

ASR+NMT

Artificial CS Test Mix Natural CS Test
All artificial CS 11.07 43.52
Mix Natural CS 11.32 25.29

TABLE IX
WORDPIECE ERROR RATE (%) OF PHRASE-LEVEL CS ON DIRECT ASR

Artificial CS Test Mix Natural CS Test
All artificial CS 11.54 38.35
Mix Natural CS 10.89 26.10



TABLE X
WORDPIECE ERROR RATE (%) OF PHRASE-LEVEL CS ON MULTI-TASK

LEARNING

Artificial CS Test Mix Natural CS Test
All artificial CS 10.55 36.49
Mix Natural CS 10.70 25.75

V. CONCLUSION

We compared four ways to achieve code-switching transla-
tion: a cascade of ASR and neural machine translation (NMT),
a cascade of ASR and BERT, an ASR that directly outputs
monolingual transcription from CS speech, and multi-task
learning. The results reveal that the more powerful model, the
better the performance.

In the future, we will further investigate how natural the
translation results are by conducting an evaluation by bilin-
gual people. As this paper is targeted only to proficiency-
driven code-switching, we will handle deficiency-driven code-
switching in the future. Furthermore, we will investigate the
possible combinations of BERT with other models.
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