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Abstract—Code-switching (CS), a hallmark of worldwide bilin-
gual communities, refers to a strategy adopted by bilinguals (or
multilinguals) who mix two or more languages in a discourse
often with little change of interlocutor or topic. The units and
the locations of the switches may vary widely from single-word
switches to whole phrases (beyond the length of the loanword
units). Such phenomena pose challenges for spoken language
technologies, i.e., automatic speech recognition (ASR), since the
systems need to be able to handle the input in a multilingual
setting. Several works constructed a CS ASR on many different
language pairs. But the common aim of developing a CS ASR
is merely for transcribing CS-speech utterances into CS-text
sentences within a single individual. In contrast, in this study,
we address the situational context that happens during dialogs
between CS and non-CS (monolingual) speakers and support
monolingual speakers who want to understand CS speakers. We
construct a system that recognizes and translates from code-
switching speech to monolingual text. We investigated several
approaches, including a cascade of ASR and a neural machine
translation (NMT), a cascade of ASR and a deep bidirectional
language model (BERT), an ASR that directly outputs mono-
lingual transcriptions from CS speech, and multi-task learning.
Finally, we evaluate and discuss these four ways on a Japanese-
English CS to English monolingual task.

Index Terms—code-switching, speech recognition, speech and
text translation, BERT, multi-task learning

I. INTRODUCTION

The number of international travelers and residents in Japan
is monotonously increasing for such purposes as tourism, or
education. According to a survey of the Ministry of Health,
Labour and Welfare (MHLW), there were 21,457 international
marriages in Japan in 2017, an increase of about 3.5 times
in 40 years [1]. These changes affect how people communi-
cate. As a result, the phenomenon of Japanese-English code-
switching is becoming more frequent. Fotos et al. investigated
four hours of conversation of four bilingual children in Japan
who had either one or two American parents and observed 153
code-switchings [2]. Their reports revealed that some people
actually use Japanese-English CS in their everyday lives. This
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phenomenon is challenging for spoken language technologies,
i.e., automatic speech recognition (ASR), since such systems
need to be able to handle the input in a multilingual setting.

Several works have constructed a CS ASR on many differ-
ent language pairs. White et al. [3] investigated alternatives
to model the acoustics for multilingual code-switching, and
Imseng et al. [4] proposed an approach to estimate universal
phoneme posterior probabilities for mixed-language speech
recognition. Vu et al. [5] focused on addressing speech recog-
nition of Chinese and English code-switching and proposed
approaches for phoneme merging in combination with discrim-
inative training as well as the integration of language identifi-
cation systems into decoding processes. Recently, Yilmaz et al.
[6] investigated the impact of bilingual deep neural networks
in the contexts of Frisian and Dutch CS. But the common aim
of developing a CS ASR is merely for transcribing CS-speech
utterances into CS-text sentences within the speech of a single
individual.

In contrast, in our study, we address the situational con-
text during dialogs between CS and non-CS (monolingual)
speakers to support monolingual speakers who are trying
to understand CS speakers. We construct a system that can
recognize code-switching speech and translate to monolingual
texts. CS translation is difficult since systems must detect
unpredictable switching positions and translate the broken
context as monolingual language. To address the problems,
we investigate several approaches, including a cascade of ASR
and neural machine translation (NMT), a cascade of ASR and
a deep bidirectional language model (BERT), an ASR that
directly outputs monolingual transcriptions from CS speech,
and multi-task learning. We evaluate and discuss these four
ways on a Japanese-English CS to English monolingual task.



TABLE I
EXAMPLE OF MONOLINGUAL TEXT RECOVERY USING BERT-MASKED LM

Source CS

D #a, charles may be a bad husband , buthe s & T3 LD Er W A% K& .

Masked text

[MASK] [MASK] [MASK] [MASK] [MASK] [MASK] , charles may be a bad husband , but he * s

[MASK] [MASK] [MASK] [MASK] [MASK] [MASK] .

Label

you know [PAD] [PAD] [PAD] [PAD], charles may be a bad husband, but he ’ s a very warm - hearted person .

Target English

you know , charles may be a bad husband , but he * s a very warm - hearted person .

II. PROPOSED APPROACHES ON
CODE-SWITCHING-TO-MONOLINGUAL TASK

As described above, we investigated several approaches to
address communication problems across languages. First, we
offer solutions for the transformation of CS text to monolin-
gual text. After that, we transform CS speech to monolingual
text. The details are described below.

A. Code-switching Text to Monolingual Text

1) Mono-Recovery BERT:
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Fig. 1. Model architecture of BERT for code-switching-to-monolingual
recovery.

Traditional language models (LMs) are based on a single-
directional (left-to-right) approach that predicts the next word
given a sequence. Unfortunately, such an approach limits the
learning of context. BERT [7], which stands for Bidirectional
Encoder Representations from Transformers, is a language
understanding model that is bidirectionally (left-to-right and
right-to-left) trained on a massive text corpus. In contrast with
a traditional LM, BERT [7] has a deeper sense of language
context.

BERT [7] exploits the Transformer [8], an attention mech-
anism that bidirectionally learns the contextual relations be-
tween words (or sub-words) in a text. It has two training
phases: (1) pre-training with a generic dataset for language
representation and (2) fine-tuning on a specific task, such as
sentiment analysis [9], question answering [10], name entity
recognition [11], which is trained with a domain-specific
dataset. Ghazvininejad et al. also utilized conditional masked
language models like BERT for translation tasks by intro-
ducing a new mask-prediction algorithm [12] that repeatedly

selects the new positions of the mask tokens and predicts them
at each iteration.

Since we only need a language understanding model, we
just utilized a pre-trained BERT that leverages a masked
language model (Masked LM). By randomly masking some
tokens, we used other tokens to predict the masked tokens
to learn the representations. Unlike other approaches, BERT
predicted masked tokens instead of the entire input. Thus,
in our case, given a CS text that mixed words from the 1st
and 2nd languages, we masked unwanted words from the 2nd
language and used BERT to recover complete sentences in the
monolingual text of the 1st language. Since we do not know
exactly how many words should be replaced, we put several
[MASK] tokens in the positions of unwanted words. Then the
model is filled with tokens [PAD] if the original target token
size is smaller than the number of [MASK] tokens. Table I
shows an example of monolingual text recovery using a BERT-
masked LM.

The architecture uses a multi-layer bidirectional Trans-
former encoder [8]. We followed the hyperparameters and the
weight initialization scheme to the BERT g, model, which is
a publicly available BERT English model with 12 layers, 768
hidden sizes, 12 self-attention heads, and 110-M parameters,
and 30522 words [7]. The model architecture is depicted in
Fig. 1. It is simpler than the original BERT model [7]. We did
not have to use the special classification embeddings ([CLS]).
We also did not have to use the segmentation embeddings
for next sentence predictions. We also did not use a special
token ([SEP]) for separating sentences, and instead of that,
we separated sentences for each input.

2) CS2Mono NMT:

Here we perform neural machine translation (NMT) from
code-switching to a monolingual text. Despite extensive re-
search on MT, few works address the problem of CS transla-
tion. Sinha et al. [13] translated Hindi-English CS by isolating
each language. Since they used a traditional approach instead
of a neural MT, the context between language switchings
is unlikely to be considered. Recently, Google’s multilingual
neural machine translation system [14] produced CS examples
from monolingual sentences by weighting language selection
in a linear combination of embedding vectors. The system
simply outputs words randomly from different languages.

In contrast, we trained NMT to learn CS to monolingual text
translation on synthetic and natural data. Our NMT system is a
standard attention-based encoder-decoder model [15], [16]. In
the encoder, we fed the input text into a fully connected layer
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Fig. 2. Model architecture of NMT.

and transformed it by a LeakyReLU (I = le 2)[17] activation
function. The output goes through two stacked BiLSTM layers
with 256 hidden units for each direction (512 hidden units in
both directions). In the decoder, the characters were projected
by two LSTM layers with 512 hidden units. The decoder used
the attention module with scores calculated by a multilayer
perceptron [18]. The model architecture is depicted in Fig. 2.

B. Code-switching Speech to Monolingual Text

1) Cascade CS2CS ASR + Mono-recovery BERT:
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Fig. 3. Model architecture of Cascade of ASR+BERT

Given code-switching speech, we first performed a neural
ASR and produced CS text. Then we utilized BERT to
recover the monolingual text. The cascade model architecture
is depicted in Fig. 3. The ASR system is an attention-
based encoder-decoder model [15], [16]. In the encoder, the
input features a log-scaled Mel-spectrogram fed into a fully
connected layer and transformed by a LeakyReLU (I = 1le 2)
[17] activation function. The output goes through three stacked
BiLSTM layers that have 256 hidden units for each direction
(512 hidden units in both directions). In the decoder, the
characters were fed into a 128-dims embedding layer and
projected by one LSTM layer with 512 hidden units. The
decoder uses the attention module and calculates the score with
a multilayer perceptron [18]. The ASR model architecture is

depicted in Fig. 5, and BERT is the same model described in
Section II-Al.

2) Cascade CS2CS ASR + CS2Mono NMT:
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Fig. 4. Model architecture of Cascade of ASR+NMT

Given CS speech, we first performed a neural ASR and
produced CS text. After that, we utilized NMT to translate
from CS to monolingual text. Similar to the cascade ASR
+ BERT, we used our attention-based encoder-decoder model.
The cascade model architecture is depicted in Fig. 4. The ASR
system has the same architecture as above, and NMT is the
same model described in Section II-A2.

3) Direct CS2Mono ASR with single-task learning:
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Fig. 5. Model architecture of ASR.

Here we trained an attention-based encoder-decoder ASR
to produce monolingual text given the CS speech. Although
this model uses the same architecture as the model described
in Fig. 5, it directly generates English transcriptions from CS
speech.

4) Direct CS2Mono ASR with multi-task learning:

Multi-task learning for speech translation has variations.
Typical multi-task learning [19] shares an encoder. Triangle
multi-task learning [20] provides information from a decoder
as well as a shared encoder. We adopted the typical multi-
task learning that has two decoders with shared an encoder.
The first decoder outputs CS text, and the second outputs
monolingual text. The shared encoder and ASR decoder have



