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Abstract—The development of text-to-speech synthesis (TTS)
systems continues to advance, and the naturalness of their
generated speech has significantly improved. But most TTS
systems now learn from data using a deep learning framework
and generate the output at a monotonous speaking rate. In
contrast, humans vary their speaking rates and tend to slow
down to emphasize words to distinguish elements of focus in an
utterance. Unfortunately, recording natural speech with various
speaking rates is expensive and time-consuming. This paper
constructs synthetic and natural speech corpora with a variable
speaking rate and analyzes the main difference in the speaking
rates of natural and artificial data. We develop a generative
adversarial network (GAN) based TTS that enables waveform
generation with phoneme-level speaking rate variations.

Index Terms—Text-to-speech synthesis, generative adversarial
networks, speaking rate variation

I. INTRODUCTION

A fundamental technology that creates a machine that can
communicate with humans through natural conversation by
speech is a text-to-speech synthesizer (TTS), which enables
computers to learn how to speak. Various TTS approaches
have been developed, including a waveform unit concatenation
approach [1], [2], the statistical modeling of a hidden Markov
model (HMM) [3], such a deep learning framework as an
end-to-end deep neural network [4], [5], a wavenet [6], and
generative adversarial networks (GANs) [7].

TTS systems, which are currently used in a wide range of
applications, successfully produce speech with a high degree
of intelligibility. The naturalness of the generated speech has
also significantly improved. Unfortunately, they cannot be
regarded as natural-sounding devices. The speaking styles and
speech expressions produced by the current text-to-speech
systems are typically averaged over training material that
was mainly collected only in reading-style speech. Therefore,
the speech lacks the variety and liveliness found in natural
speech. But, recording a large amount of speech utterances
that cover various speaking styles and expressive ranges is
time-consuming and expensive.

Several studies addressed this issue by modeling speaking
style variations. Yoshimura et al. simultaneous modeled the
spectrum, pitch, and duration in HMM-based speech synthesis
so that their system can generate speech that resembles various
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speaker’s voices [8]. Yamagishi et al. achieved emotional
expressivity and speaking style variability in an HMM-based
speech synthesis [9]. But these techniques were based on
the HMM framework. For deep learning, Skerry-Ryan et
al. augmented an end-to-end Tacotron with explicit prosody
controls for expressive speech synthesis.

Unfortunately, only few studies have addressed the speaking
rate issue. In fact, the speaking rate often significantly in-
fluences how listeners perceive speech. We may speak much
quicker during an emergency or slow down for greater em-
phasis. A study by Manson et al. found that when the speech
rate is entrained and where dyad speech rates converged from
the beginning to the end of a conversation, the success rate
of negotiation and cooperation will probably increase [10].
Therefore, it is critical to developing a speech synthesis system
that can produce natural spoken dialogues by considering the
other party, as well as be able to phrase the message with an
appropriate speaking rate according to the situation.

Recently, Wang et al. proposed “global style tokens” (jointly
trained within Tacotron) that can be used to control synthesis
speech by varying the speed and speaking style [11]. But
since its information embedding is stored globally, controlling
the duration at the word and phoneme levels is challenging.
Although Park et al. introduced a mechanism for phonemic-
level duration within the sequence-to-sequence framework
[12], their system required phoneme input instead of text,
which may be too complicated for actual users. The proposed
method’s effectiveness was also only evaluated through sim-
ulated data with unnatural speaking rate variations. Further-
more, the approach did not consider the effect on the other
party.

In this study, we first construct synthetic and natural
speech corpora with variable speaking rates, analyze the main
difference in their speaking rates, and develop a TTS that
enables waveform generation with phoneme-level speaking
rate variations. In contrast to existing works, our work is
based on GAN-TTS because it can also achieve a high-quality
speech synthesis using only a small amount of data. We also
subjectively evaluate our system and investigate its effect on
listeners when it produces speech at a constantly fast speed
or when it produces speech that slows down to emphasize a
certain message.



Fig. 1. Overview of GAN-TTS.

II. SPEECH SYNTHESIS USING A GENERATIVE
ADVERSARIAL NETWORK

Two techniques remain widely studied in speech synthesis
methods: HMM [3] and deep learning frameworks [5]. Al-
though HMM-based speech synthesis works faster using just
a small amount of training data, its sound quality is lower
than DNN speech synthesis. On the other hand, such end-to-
end DNN-based speech synthesis technology like Tacotron,
which was rapidly developed, can easily generate acoustic
speech features directly from characters. But the disadvantage
of a method that uses such a DNN-based framework is that a
large amount of data is required for learning. Consequently, to
enable a speech synthesis system that can control the speech
speed, we require a large amount of data containing various
speech speeds. However, such data are often unavailable.
Therefore, we utilize GAN-TTS [7], a speech synthesis that is
constructed based on a generation adversarial network that can
produce high-quality speech by learning even from a relatively
small amount of data.

Figure 1 illustrates the GAN-TTS architecture, which con-
sists of two types of neural networks: generator G and
discriminator D. Its training procedure is employed by an
adversarial process in which the two models (generator G' and
discriminator D) compete. In other words, the generator learns
to create the speech output that causes the discriminator to
misrecognize the generated result as natural speech, and the
discriminator learns to accurately distinguish between natural
and synthetic speech produced by generator GG. Further details
of GAN-TTS technology are available [7].

III. PROPOSED METHOD

As described in Fig. 2, a front-end text processing block
extracts the linguistic features from a given input text. Since
many contextual factors (e.g., phoneme identity, word stress,
etc.) might affect speech’s prosodic characteristic, generating
a full-context label from a given text is the most common
way in standard GAN-TTS, which is also well-known in a
HMM-based TTS framework.

Figure 2 shows an example of a full-context label that is
comprised of the following factors:

o Phoneme level:
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Fig. 2. Example of full-context label

- p1,..,p5: {second preceding, preceding, current,
succeeding, second succeeding} phoneme;

— pg,p7: position of current phoneme in the current
word (forward and backward);

« Syllable level:

. agz: {type of syllable stress, number of
phonemes} in the preceding syllable.

- b1,...,016: {type of syllable stress, number of
phonemes, position in word and phrase, number of
syllables before and after} in the current syllable.

{type of syllable stress, number of

phonemes} in the succeeding syllable.

o Word level:

— d1,do: {part-of-speech, number of syllables} in the
preceding word.

- eq,...,es: {part-of-speech, number of syllables, po-
sition in phrase, number of content words before and
after} in the current word.

— f1, fo: {part-of-speech, number of syllables} in the
succeeding word.

= ai, .-

- C1,...,C3:

o Phrase level:

— g1, g2: number of {syllables and words} in the pre-
ceding phrase.

— hi, ..., e5: {number of syllables and words, utterance
position, TOBI endtone} of the current phrase.

— 41,42: number of {syllables and words} in the suc-
ceeding phrase.



« Utterance level:

- Ji,-.., j3: number of {syllables, words, and phrases}
in the utterance;

To achieve a GAN-TTS that controls the speaking rate
variations at the phoneme level, we propose two ways to
incorporate such speed information within GAN-TTS:

1) Method-1: phoneme-level incorporation

Here we incorporate the information of the speaking
rate variations within the phoneme symbols of the full-
context label.

« First, we define three discrete symbols of speech
speed tags that differentiate the speaking rate: “N”
for standard read speech (normal), “S” for slow, and
“F” for fast speech.

« Then we incorporate the speech speed tag within
the phoneme level by directly attaching it to the
phoneme label by specifically modifying pq, ..., ps
label into p; + N/S/F,...,ps + N/S/F.

« For example, the standard label of phoneme “eh” in
word “hello — (hh, eh,l,ow)” is “pau* hh —eh+
I = ow”. With the slow speaking rate information,
it becomes “pau * hhS — ehS + 1S = owS”.

2) Method-2: utterance-level incorporation

Here we incorporate the information of the speaking rate
variations within the utterance level of the full-context
label.

o In such audio manipulation tools as SoundExchange
(sox) [13], we define the percentage that modifies
the original rate’s speed (i.e., 75% to slow down or
125% to speed up).

o Here we set 100 as the normal speed, below that
level is slow speech, and over it is fast speech.

« We incorporate the speech speed tag within the
utterance-level by introducing new tag K : k; after
J1,---, j3- In k1, we define the speed as a percentage.

« For example, in the previous example of word “hello
(hh eh 1 ow),” the phoneme label is kept the same as
in standard label “pauxhh—eh~+1 = ow,” but at the
utterance level, we added “K : 75” to explain that
we modified speaking rate 75% from the original
rate.

In both methods, “pau” for the silent part ignores the speaking
rate information, since there is no change in the generated
acoustic features regardless of the speed information.

IV. DATA CONSTRUCTION AND ANALYSIS
A. Construction of speech data with different speaking rate

Our data are based on the CMU ARCTIC database that was
constructed at the Carnegie Mellon University as phonetically
balanced, US English single speaker databases designed for
unit selection speech synthesis research [14]. It consists of
1132 utterances in a reading speech style at a normal speed.

We performed the following procedure:

o Prepared data samples

First, we created data samples from the CMU ARCTIC

database based on the original “normal “data. After that,
we modified the speaking rate artificially using sox with
parameters of 0.75 (75% slowing down the original rate)
and 1.25 (125% speeding up the original rate) to create
“slow” and “fast” sample data. We chose these parameters
in which the resulting slow and fast speech still sound
natural.
« Recorded natural speech
Next we recorded the natural speech data uttered by
one female and one male. We asked them to talk as
naturally as possible and simultaneously produce speech
with three different speaking rates, as in the data samples.
We recorded at a 44.1-kHz sampling rate and 16-bit
depth. We got 6,792 utterances (two speakers and three
speaking rates) that were used for analysis as well as
model learning and evaluation.
o Created artificial data

To compare and analyze the natural and artificial data
with the same speaker voice, we artificially modified the
speaking rate from the “normal” version of the newly
recorded data. Similar to before, we used sox with param-
eters of 0.75 (75% slowing down the original rate) and
1.25 (125% speeding up the original rate) for “slow” and
“fast” from the new data with female and male speakers.

B. Analysis

Several analyses were carried out in this study. First, we
investigated the average duration of the total utterances. Fig. 3
shows the average speech length in “normal,” “slow,” and
“fast” for female and male voices. The continues values
represent the ratio between the “slow” and “fast” conditions
with respect to the “normal” condition. The one from the
artificial data is marked “a_slow” and “a_fast.” The artificial
data have 0.75 and 1.25 for the “slow” or “fast” condition in
exactly the same way as we established the parameters during
the data creation. Given the same reference, humans tend to
produce slower speech than the artificial one in the “slow”
condition and faster speech than the artificial one in the “fast”
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Fig. 3. The average speech length in “normal,” “slow,” and “fast” for female
and male voices. The artificial data is marked “a_slow” and “a_fast.”

st

norma Sow a_siow



(=]
n

a

O female

W male

|

a_slow fast

norma show

Fig. 4. Average duration ratio of vowels in “normal,” “slow,” and “fast” for
female and male voices. The artificial data is marked “a_slow” and “a_fast.”
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Fig. 5. Average duration ratio of consonants in “normal,” “slow,” and “fast”
for female and male voices. The artificial data is marked “a_slow” and
“a_fast.”
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Fig. 6. Average power ratio of all phonemes in “normal,” “slow,” and “fast”
for female and male voices. The artificial data is marked “a_slow” and
“a_fast.”

condition. These phenomena were identified in both female
and male speakers.

We further investigated the differences between the average
duration of the vowels or consonants. Here we expected no
difference in the duration of the consonants between the
natural and artificial data, but there was a large difference

in the vowels. Fig. 4 shows the average duration ratio of the
vowels in female and male voice, and Fig. 5 shows the average
duration ratio of the consonants in female and male voice.
However, from these figures, we identified a difference in the
vowels and the consonants in female voice. A similar tendency
is also indicated in the male voices for their average duration
ratio of the vowels and consonants.

Last, we investigated the average power of all the phonemes
between the natural and artificial data. Fig. 6 shows the results
for both female and male voices. We found no significant
difference in the change in the power at different speaking
rates. In other words, in reading-style speech, a change in the
speaking rate does not change the volume.

In summary, since the difference in vowels and consonants
tends to have the same phenomena, distinguishing between
vowels and consonants may be unnecessary when controlling
the speaking rate in English speech. We also confirmed that we
do not have to address the power for controlling the speaking
rates since almost no change in it occurs due to the change in
the speed.

V. EXPERIMENTS

Next we discuss the evaluation of our proposed model.
Given an input sentence, we first generated full context labels
using part of the tools from the HMM/DNN-based Speech
Synthesis System (HTS) [15], [16]. After that, we included
speaker variation information into the labels based on the two
proposed methods described in Section 3. In proposed method-
1, we added a discrete label (“N,”*S,” and “F”) to the phoneme
level, but in proposed method-2, we added a continues value
in the utterance level and trained the GAN-TTS based on these
data. For comparison, we applied sox that changed the speed
on the synthesized output produced with the “normal” data.

Here we used a preference (AB) test to evaluate the perfor-
mance and subjectively assessed the speech’s naturalness. 11
subjects (7 males, 4 females), who have TOEIC! score higher
than 700 points (daily conversational level), participated in the
experiments. We randomly gave them two speech utterances
and asked them to answer which voice sounded more natural:
voice A, voice B, or no difference. Fig. 7 compares the
proposed method-1 and the sox baseline, and Fig. 8 shows
the contrast between proposed method-2 and the sox baseline.
Proposed methods-1 and -2 are more natural than the baseline.
Fig. 9 compares proposed methods-1 and -2, where there is no
significant difference in the quality of the synthesized speech
among the proposed methods.

Next we evaluated the effectiveness of the phoneme-level
speaking rate variation. As we discussed in the introduction,
we generally talk much more quickly during an emergency
and generally slow down for emphasis. We generated the
following three types of speech: (1) normal, (2) constantly
faster, and (3) slowing down on specific words or phrases for
emphasis. However, if the speech speed is correctly controlled
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Fig. 7. ABX preference test on naturalness: The baseline versus the proposed
method-1.
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Fig. 8. ABX preference test on naturalness: The baseline versus the proposed
method-2.
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Fig. 9. ABX preference test on naturalness: The proposed method-1 versus
the proposed method-2.

by GAN-TTS, then only the relevant part sounds as if it
were emphasized. If partial speech speed control is impossible,
the emphasis part cannot be identified. Since we found no
difference in the quality between the two proposed methods in
how the speech speed information was given, we performed
this experiment with the phoneme extension method or our
proposed method-1.

Again, a preference (AB) test was used to evaluate the
performance. We presented the subject a text with emphases
marked (in bold) on certain words, and two speech utterances
that presented randomly. Then, we asked the subjects to
answer which voice that sounds more emphasized. Figure 10
shows the results of the proposed method in comparison with
consistently fast speech. The results reveal that the proposed
method can change the speaking rate appropriately. In other
words, it was possible to make an utterance that emphasized
only on a specific word or phrase in the sentence. However,
according to the Figure 11, there is no difference between the
proposed method and the “Normal” speech. This was because
the recorded ‘Normal” speech was slower than standard natural
reading speech, so it sounds like the whole sentence was

Proposed Fast NO
method diff
0% 50% 100%

Fig. 10. ABX preference test on speaking rate: Baseline that consistently
generates fast speech rate versus the proposed method that changes the
speaking rate on emphases word.

Proposed No
Normal _
method diff
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Fig. 11. ABX preference test on speaking rate: Baseline that consistently

generates normal speech rate versus the proposed method that changes the
speaking rate on emphases word.

emphasized, and therefore there was no difference with the
proposed method.

Again, we used a preference (AB) test to evaluate the perfor-
mance. We presented the subjects with a text whose emphasis
was marked (in bold) on certain words and randomly presented
in two speech utterances. Then the subjects answered which
voice received more emphasis. Figure 10 compares the results
of our proposed method with consistently fast speech. The for-
mer appropriately changed the speaking rate. In other words,
we can create an utterance that only emphasizes a specific
word or phrase in a sentence. However, based on Fig. 11,
perhaps no difference can be found between the proposed
method and “normal” speech. Since the recorded ‘“normal”
speech was slower than the standard natural reading speech,
it sounds like every sentence was emphasized, and therefore
no difference was identified with the proposed method.

VI. CONCLUSION

We proposed a GAN-TTS that controls the variation of the
speaking rate at the phoneme level to allow it to change within
utterances. We proposed two methods and experimentally
verified their usefulness. Our proposed method, which is more
natural than artificially manipulating the waveform of synthetic
speech, can appropriately perform speaking rate variation at
the phoneme level. To some degree, emphasis can be shown
by slowing down the speaking rate of certain words. In the
future, we will further investigate the possibility of varying
the speaking rate to entrain human speech as a dialog partner.
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