Detecting Syntactic Violations from Single-trial EEG using Recurrent Neural Networks

Shunnosuke Motomura, Hiroki Tanaka, Satoshi Nakamura
Nara Institute of Science and Technology, Nara, Japan
{motomura.shunnosuke.mj1, hiroki-tan, s-nakamura}@is.naist.jp

ICMI 2019 ACM International Conference on Multimodal Interaction - Late Breaking Results

Introduction

- Research goal
 - Automatic evaluations of sentences for machine translation / dialog system
 Subjective evaluations are biased & ambiguous by human evaluators
- Research purpose
 - Detecting syntactic violations in spoken sentences with single-trial EEG
 Language-related EEG is usually studied by averaging multiple-trials due to its low signal-to-noise ratio
- Overview
 - Single-trial EEG classification
 - We have to evaluate each sentence -> single-trial classification
 - [Tanaka H, et al., 2019] achieved 57.7% acc. for detecting syntactic violations
 - More accurate methods are necessary
 - Some Neural network (NN) models well performed
 - Stacked autoencoders (SAE) [Vareka L, et al., 2017]
 - Long short-term memory (LSTM) [Alhagry S, et al., 2017]
 - In this work, neural network models (SAE and LSTM) were applied to classify single-trial EEG signals for syntactic violations

Materials

- Syntactic violations
 - Japanese sentences manually crafted referring to [Takazawa S, et al., 2002]
 - Repetition of nominative case violates Japanese grammar
 a. tori-ga sora-o ton-da
 bird-NOM sky-ACC fly-PAST
 (The bird flew in the sky.)
 b. *tori-ga sora-ga ton-da (* means syntactic incorrectness)
 bird-NOM sky-NOM fly-PAST
 NOM : nominative case marker
 ACC : accusative case marker
 PAST : past tense morpheme
 - The nominative case of second phrase as synchronous onset (t=0ms)
 - 40 sentences for syntactic correct and incorrect condition respectively
 - Speech by a professional female narrator was used for stimulus

EEG Data Acquisition

- Experimental procedure
 - Carried out in a soundproof room

 ![normal or anomalous](image)

 (1) watch the "+" mark 1s
 (2) listen to the sentence 4s
 (3) press the button 2s

 ![normal or anomalous](image)

 Participant: 19 Japanese speakers (16 males & 3 females, mean age: 24.2)

- EEG recording and preprocessing
 - EEG cap: ActiCap by Brain Products (32 channel electrodes)
 - Preprocessing
 1. Re-referencing
 2. High-pass filtering
 3. Epoching at synchronous onsets
 4. Reject artifacted epochs and removing muscle/eye blink artifacts
 - 1 participant was rejected (more than 30% epochs were rejected)

- Feature extraction [Vareka L, et al., 2017]
 - Average amplitudes b/w 100 ms and 800 ms per each 50 ms time window

 ![Feature extractions](image)

 The child throw the toy

 Speech

 EEG

 Classification model

 Incorrect

 Single-trial EEG classification

 - We have to evaluate each sentence -> single-trial classification
 - [Tanaka H, et al., 2019] achieved 57.7% acc. for detecting syntactic violations
 - More accurate methods are necessary
 - Some Neural network (NN) models well performed
 - Stacked autoencoders (SAE) [Vareka L, et al., 2017]
 - Long short-term memory (LSTM) [Alhagry S, et al., 2017]
 - In this work, neural network models (SAE and LSTM) were applied to classify single-trial EEG signals for syntactic violations

- Baseline model: linear-kernel support vector machine (SVM)
 - Training: 14 participants’ data (1040 sentences)
 - Test: 4 participants’ data (314 sentences)
 - Correct sentence: 50% / incorrect: 50% -> chance level: 0.5

Optimization of hyper-parameters

 - Grid-searching with 10-fold cross validation in the training data
 - SVM
 1. C = {0.001, 0.01, 0.1, 1, 10, 100}
 2. SAE
 - Number of hidden units: (10, 50, 100, 200, 300)
 - Number of hidden layers: (1, 2, 3)
 - Activation functions: (sigmoid, rectified linear unit)
 3. LSTM
 - Number of hidden units: (5, 10, 15, 20, 25, 30), others are the same as SAE

- Multiple-trials averaged analysis
 - We also investigated classification performances on averaging multiple-trials EEG signals

Results & Conclusions

- Single-trial classification results
 - Multiple-trials averaged accuracies
 - Gradually increasing while the number of averaging trials increase

 ![Single-trial classification results](image)

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM</td>
<td>0.584</td>
</tr>
<tr>
<td>SAE</td>
<td>0.583</td>
</tr>
<tr>
<td>LSTM</td>
<td>0.613</td>
</tr>
</tbody>
</table>

- Participant number on test set

 ![Participant number on test set](image)

- Multiple-trials averaged analysis

 - LSTM could achieve over 60% accuracy higher than chance level (p<0.01)
 - Sequential models are feasible to properly classify high-dimensional sequential EEG signals

- In future
 - Raw EEG as features: NN can learn without specific feature extractions
 - Detection of semantic violations in sentences for evaluations of sentences