
 Feature extraction [Vareka L, et.al, 2017]

• Average amplitudes b/w 100 ms and 800 ms per each 50 ms time window

 Models: 
• Long short-term memory (LSTM)

Feature vectors were inputted in sequential manners
• Stacked autoencoders (SAE)

Feature vectors of all channels were concatenated
into one column vector

Detecting Syntactic Violations from Single-trial EEG using 
Recurrent Neural Networks
Shunnosuke Motomura, Hiroki Tanaka, Satoshi Nakamura
Nara Institute of Science and Technology, Nara, Japan
{motomura.shunnosuke.mj1, hiroki-tan, s-nakamura}@is.naist.jp

Introduction
 Research goal
• Automatic evaluations of sentences for machine translation / dialog. system

Subjective evaluations are biased & ambiguous by human evaluators

 Research purpose
• Detecting syntactic violations in spoken sentences with single-trial EEG

Language-related EEG is usually studied by averaging multiple-trials due to 
it’s low signal-to-noise ratio

 Overview

 Single-trial EEG classification
• We have to evaluate each sentence -> single-trial classification
• [Tanaka H, et.al, 2019] ahieved 57.7% acc. for detecting syntactic violations

-> More accurate methods are necessary

• Some Neural network (NN) models well performed 
- Stacked autoencoders (SAE) [Vareka L, et.al, 2017]

- Long short-term memory (LSTM) [Alhagry S, et.al, 2017]

• In this work, neural network models (SAE and LSTM) were applied to classify 
single-trial EEG signals for syntactic violations
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 Syntactic violations
• Japanese sentences manually crafted refering to [Takazawa S, et.al, 2002]

• Repetition of nominative case violates Japanese grammar

a. tori-ga sora-o ton-da
bird-NOM sky-ACC fly-PAST
(The bird flew in the sky.)

b. *tori-ga sora-ga ton-da (* means syntactic incorrectness)

bird-NOM sky-NOM fly-PAST

NOM : nominative case marker
ACC : accusative case marker
PAST : past tense morpheme 

• The nominative case of second phrase as synchronous onset (t=0ms)
• 40 sentences for syntactic correct and incorrect condition respectively
• Speech by a professional female narrator was used for stimulus

 Experimental procedure
• Carried out in a soundproof room

 Participants: 19 Japanese speakers (16 males & 3 females, mean age: 24.2)

 EEG recording and preprocessings
• EEG cap: ActiCap by Brain Products (32 channel electrodes)
• Preprocessings

1. Re-referencing
2. High-pass filtering
3. Epoching at synchronous onsets
4. Reject artifacted epochs and removing muscle/eye-blink artifacts
-> 1 participant was rejected (more than 30% epochs were rejected)
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incorrect

normal or anomalous

(1) watch the ‘+’ mark
1s

(2) listen to the sentence
4s

(3) press the button
2s

 Baseline model: linear-kernel support vector machine (SVM)
 Data
• Training :14 participants’ data (1040 sentences)
• Test :4 participants’ data (314 sentences)
• Correct sentence: 50% / incorrect: 50% -> chance level: 0.5

 Optimization of hyper-parameters
• Grid-searching with 10-hold cross validation in the training data
• SVM

- C = {0.001, 0.01, 0.1, 1, 10, 100}

• SAE
- Number of hidden units: {10, 50, 100, 200, 300}
- Number of hidden layers: {1, 2, 3}
- Activation functions: {sigmoid, rectified linear unit}

• LSTM
- Number of hidden units: {5, 10, 15, 20, 25, 30}, others are the same as SAE

 Multiple-trials averaged analysis
• We also investigated classification performances on averaging multiple-

trials EEG signals

 Sigle-trial classification results

 Multiple-trials averaged accuracies
• Gradually increasing while 

the number of averaging trials increase

 Conclusions
• LSTM could achived over 60% accuracy higher than chance level (p<0.01)

-> Sequential models are feasible to properly classify high-dimensional 
sequential EEG signals

 In future
• Raw EEG as features: NN can learn  without specific feature extractions
• Detection of semantic violations in sentences for evaluations of sentences

Model Accuracy

SVM 0.584

SAE 0.583

LSTM 0.613
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