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Abstract

Real-time machine speech interpreters aim to mimic human in-
terpreters that able to produce high-quality speech translations
on the fly. It requires all system components, including speech
recognition, machine translation, and text-to-speech (TTS), to
perform incrementally before the speaker has spoken an entire
sentence. For TTS, this poses problems as a standard frame-
work commonly requires language-dependent contextual lin-
guistics of a full sentence to produce a natural-sounding speech
waveform. Existing studies of incremental TTS (iTTS) have
mainly been conducted on a model based on hidden Markov
model (HMM). Recently, end-to-end TTS based on a neural net
has synthesized more natural speech than HMM-based systems.
In this paper, we take an initial step to construct iTTS based on
end-to-end neural framework (Neural iTTS) and investigate the
effects of various incremental units on the quality of end-to-end
neural speech synthesis in both English and Japanese.

Index Terms: Real-time machine speech interpreters, incre-
mental speech synthesis, end-to-end framework, deep learning

1. Introduction

Speech-to-speech translation (S2ST) is an innovative technol-
ogy that translates speech signals from a source language
to another language, enabling people to communicate with
each other by speaking in their own native languages. S2ST
systems commonly consist of three components: automatic
speech recognition (ASR), machine translation (MT), and text-
to-speech (TTS) synthesis. In other words, they first recognize
the speech in the source language, automatically translate its
words into the other persons language, and finally synthesize
them in the target language into speech. In a standard man-
ner, the process is done sentence by sentence. The MT starts
to translate to the target text after receiving a complete source
sentence from the ASR [1], and TTS synthesizes after receiv-
ing the complete target sentence from the MT [2]. However,
spoken speech in a lecture or meeting can be very long with
unclear sentence breaks. In this case, S2ST will respond with
significant delays and creates difficulty for the listeners who are
trying to follow the speaker’s talk or conversation.

In contrast to the S2ST system, human interpreters gen-
erally break sentences into smaller chunks, and incrementally
translate based on partial information with minimum delay [3].
But human simultaneous interpreters are expensive, and the
range of possible languages that can be translated is usually very
limited. Our dream is to construct real-time machine speech
interpreters that can imitate the characteristics of the human
simultaneous interpreter process. One critical difference with
standard S2ST systems is that each component (ASR, MT, TTS)
needs to generate the output on the fly before receiving a com-
plete sentence. Several existing works in the ASR and MT fields

produce high-quality speech translations while simultaneously
minimizing the latency of the translation process. These studies
are widely conducted from parametric models to neural network
architecture [4, 5, 6, 7, 8, 9, 10, 11]. Unfortunately, research in
incremental TTS (iTTS) remains quite limited.

To produce high-quality speech synthesis, many contex-
tual linguistic factors (e.g., phoneme identity and word stress)
must be considered because such information can affect the
prosodic characteristics of speech. In a standard HMM-based
TTS system, the following three processes are typically exe-
cuted: (a) analyzing the entire sentence and extracting the lin-
guistic features by natural language processing; (b) establish-
ing a sentence-based HMM sequence on the basis of linguistic
specifications, and estimating acoustic features while consid-
ering the time-series of sentences [12, 13]; (c) reconstructing
speech waveform from the predicted acoustic features. In con-
trast, an iTTS system only has to estimate the target prosody
online based on partial knowledge of the syntactic structure of
the sentences. The iTTS has to extract the linguistic features
in a situation where some linguistic features (the next part of
speech tag, the next word, etc.) are unknown during the synthe-
sis. A limited HMM sequence has to be constructed from lim-
ited linguistic features, local optimization has to be performed,
and acoustic features must then be estimated. Unfortunately,
the speech quality is significantly deteriorated due to the lim-
ited linguistic features and local optimization.

Several studies attempted to improve the quality by re-
placing the unknown linguistic features with the average val-
ues from a dataset [14], performing a training strategy that can
handle the unknown linguistic features [15], and proposing an
approach to predict the part of speech of the next word in an
acoustic time-series [2, 16, 17]. Although the speech quality
can be improved, these existing works have mainly been con-
ducted only with a HMM-based speech synthesis framework.
In a pipeline model like HMM-based architecture, all the sub-
components (i.e., linguistic feature extractor, acoustic model,
vocoder) are tuned and trained separately, and errors in the
earlier stage can propagate through the later stages. Further-
more, the requirement of having full-context labels of linguistic
features makes this step difficult for iTTS. Consequently, the
speech quality remains limited.

Recently, end-to-end TTS systems have been proposed
[18, 19], based on seq2seq with attention [20]. One main fac-
tor underlying the popularity of the end-to-end deep-learning
architecture is the possibility of simplifying many complicated
hand-engineered models and letting DNNs directly map from
the character input to the output spaces of speech acoustics. Full
context labels in linguistic features are not required anymore,
and the synthesized speech quality has outperformed HMM-
based frameworks. In this paper, we take an initial step toward



constructing a Neural iTTS. To the best of our knowledge, this
is the first study that attempts to synthesize speech in real-time
using Neural iTTS. We also investigated the effects of various
incremental units on the quality of end-to-end neural speech
synthesis in both English and Japanese languages.

2. End-to-end TTS

End-to-end TTS tasks model the conditional probability be-
tween p(x|y), where y = [y1, ..., yr] is the sequence of the
text input with length 7" and x = [z1, ..., zs] is the sequence
of the (framed) speech features with length S. In this work,
the core architecture of an end-to-end TTS is based on Tacotron
[18] with several structural modifications. Fig. 1 illustrates our
modified Tacotron for English and Japanese, and we describe
the difference with the original architecture in the following sec-
tions.
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Figure 1: Architectures of our English and Japanese end-to-end
TTS system

2.1. Overall architecture

The original Tacotron architecture has one encoder and two de-
coders. The encoder consists of an embedding layer, pre-net
layers (two linear layers with dropout) and a CBHG (1-D con-
volution bank, a highway network, and a bidirectional gated re-
current unit layer) module. At the encoding step, we first project
the sequence of text input y = [y, ..., yr| into the embedding
layer, which is fed into two linear layers, and finally we pass the
outputs of the full-connected layers into the CBHG components
and produce hidden representative h® = [h{, ..., h%]. On the
decoder side, we have two layers of a residual gated recurrent
unit (GRU) with attention and post-processing CBHG modules.
Given encoder outputs, the attention modules estimate a “con-
text vector” cs, and then the GRU-decoder estimates log mel-
spectrogram x™ = [z ... 3] from the context vector, and
with the pos-processing CBHG, it estimates linear magnitude-
spectrogram sequences X = [xf, ..., £ 5] from all the log mel-
spectrogram outputs. Finally, Tacotron reconstructs a sequence

of the speech waveform from a linear-spectrogram using the
Griffin-Lim algorithm [21].

In this manner, the original Tacotron didn’t decide any stop-
ping time-step at the GRU-decoder. To determine the stopping
step, we added one linear layer that estimated two values (0:
continuation, 1: stop) from the outputs of the residual GRU.
The strategy resembles a previously proposed one [19, 22]. The
layer uses a sigmoid function as an activation function. For
training, we used the following loss function:

M .M _R LR _ A
Loss(x™, %" ,x ", %X ",s,8) =

(1.0 — @) x & ST {2 | = [2:M]) + (|zff] — |2.5))}
—ax A ST {silog (s0) + (1 — se)log(1 — §)}, (D)

where M, &Mzl &, s,, and § are the truth log mel-
spectrogram, the predicted log mel-spectrogram, the truth log
magnitude spectrogram, the predicted log magnitude spectro-
gram, the truth stop flag, and the predicted stop flag at the ¢
frame. The « is a small value (En:1le-7, Ja:1e-5) as a hyperpa-
rameter.

2.2. Embedding layer

Specifically to the embedding layer, our English end-to-end
TTS follows the original Tacotron that uses character sequences
as input to the embedding layers (Fig. 1 left side). But for
Japanese, it is difficult because there are three kinds of Japanese
characters: hiragana, katakana, and kanji. Since their pronun-
ciation often changes depending on their combinations (espe-
cially when combining kanji), the number of model’s input may
become unwieldy. Here with the current available data, auto-
matically learning the pronunciations is difficult from all the
Japanese characters within an end-to-end TTS framework; in-
stead we simply use phoneme sequences as input.
Furthermore, Japanese is a pitch accent language. This
means that the meaning of words can be altered by changing
the pitch of the same character sequence. For example, “hashi”
can mean a bridge or a pair of chopsticks, depending on the
pitch accents. However, such pitch information is represented
not in words or phonemes but in accent phrase units. Therefore,
to accommodate such pitch information, we proposed using the
accent type in accented phrases as input. In other words, we
use two embedding layer for the phoneme and accent types in
a Japanese end-to-end TTS (Fig. 1 right side). After that, we
concatenate two embedding outputs as one encoder input.

3. Proposed Neural iTTS

Figure 2 illustrates an overview of the training and synthesiz-
ing methods in our proposed incremental end-to-end approach,
whose details can be found in the following sub-sections.

3.1. Training and synthesizing strategies in iTTS

Figure 2(a) shows the training process. Since iTTS needs to
handle shorter units than sentences, we first prepared our dataset
by randomly splitting the full sequences into three parts and
then added beginning and end symbols to each input unit text.
Here we use different symbols to differentiate the units location
within the full sentence: “<s>" as the sentences start, “<m>"
as the middle sentences start, “</s>" as the sentences end,
and “</m>" as the middle sentences end. However, we still
performed the training in a sentence-by-sentence or phrase-by-
phrase fashion without much modification to the original one.
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Figure 2: Overview of training and synthesizing approaches

Here we estimated the loss between the natural and estimated
features as described in eq. (1), performed back-propagation
using this loss, and updated the model parameters.

At the synthesizing stage (Fig. 2(b)), the speech was
synthesized using units with a length smaller than a sentence
length. Here we stopped the mel-spectrogram outputs by the
predicted stop flag (“</s>" end of sentence or “</m>" end
of the middle sentence) during the synthesis. After that, we
concatenated all the synthesized waveforms of the units into
sentence-based speech waveforms. More details about the
choice of the synthesized unit can be found in the next sub-
section.

3.2. Choices of incremental units for iTTS

In existing works in iTTS, most HMM-based iTTS systems
were constructed for English, and speech was synthesized
word-by-word [2]. In this paper, we investigated several pos-
sible synthesized units for an English iTTS:

One word: One incremental unit is one word, so the synthesize
process is done word-by-word.

Two words: One incremental unit is two words.

Three words: One incremental unit is three words.

Half sentence: Speech synthesis is done after receiving half of
the sentence.

Sentence: Speech synthesis is done after receiving one full
sentence. This resembles a non-incremental (standard
TTS) which is an upper bound system.

Accent phrase units have been investigated as optimum
units in Japanese iTTS systems [17]. Here, we investigated a
variant of accent phrase units:

One accent phrase: Since the unit is one accent phrase, the
synthesis is done each the accent phrase by the accent
phrase.

Two accent phrases: The unit is two accent phrases.
Three accent phrases: The unit is three accent phrases.

Half sentence: Speech synthesis is done after receiving half of
the sentence.

Sentence: Speech synthesis is done after receiving one full
sentence, and this resembles also a non-incremental
TTS.

The smallest incremental unit in English is one word, and
the word boundary can be predicted trivially with little latency.
Here, we investigate multiple lengths of the smallest unit (i.e.,
one word, two words, three words, etc.). Half-sentence incre-
mental unit is not predicted. It is an approximation of several
words that is more than three words unit. In Japanese, the small-
est incremental unit is one accent phrase. It can be predicted
with part-of-speech (POS) tag [23]. In real usage, incremental
POS tagger to detect an accent phrase is necessary.

In the synthesis and training parts of the TTS system,
the first input of the decoder is usually a zero vector of the
mel-spectrogram called the “GO frame.” We proposed two ap-
proaches for connecting the units:

Independent: We assumed that all units are independent and
simply used a zero vector in all of them despite the ex-
isting previous acoustic features. In this case, the model
failed to learn the acoustic time-series within one full
sentence.

Look-back context: Except the unit from the beginning of the
sentence, for other units that start from the middle of the
sentence, we replaced the zero vector with the last vector
of the mel-spectrogram from the previous units. In this
case, the model may be able to learn the acoustic time-
series within one full sentence.

4. Experiment
4.1. English dataset

We used the LJ-speech 1.1 dataset [24]. The original dataset
consisted of 13,100 sentences (about 24 hours of speech au-
dio with a 22.05-kHz sampling frequency) spoken by a single
female speaker. To get the time-alignment information, we per-
formed forced alignment with the HTS toolkit and obtained
about 10-k pairs (speech and text) of successfully generated
data. We divided them into 9.8-k pairs of data for training,
100 pairs for the development set, and 100 pairs for the test
set. Then as described above, we split each full sentence into
three parts with random length inputs and combined these data.
The size of training data is four times (full sentence data plus
three parts of the divided unit data).

We normalized the text transcription before using it because
some words are abbreviations and numerics. The input consists
of 43 letters including lower case letters of the alphabet and such
special characters as spaces, sentence beginnings/endings, etc.
The acoustic features were extracted, and our final set was com-
prised of 80 dimensions of log mel-spectrogram features, 1024
dimensions of log magnitude spectrogram 80 mel-spectrum,
and a 1024-linear spectrum. The frame shift and frame length
are 12.5 and 5 ms. The batch size and the optimized method
are identical to the original Tacotron. But the reduction factor
(the number of predicted frames at one decoding step) is 5 in
our model.



4.2. Japanese dataset

We used the JSUT 1.1 dataset that included 7,696 sentences (10
hours of audio sampled at 48-kHz, we downsampled to 22.05-
kHz) spoken by a single native female speaker [25]. We used
Open Jtalk' for extracting the phoneme and accent types from
the text. However, Open Jtalk often suffers from incorrect or
missing pronunciation. To avoid these mistakes, we used a mor-
phological analysis system (Mecab)* and dictionaries for check-
ing mistaken pronunciations. When we got identical pronunci-
ations for both Open Jtalk and Mecab, we added them to the
data. We also removed the “Repeat 500” sub-dataset (Dataset
was recorded to 100 transcriptions five times). Finally, we had
5276 pairs (speech and text) of data and divided them into 5-k
data pairs for training, 100 pairs for the development set, and
100 pairs for the test set.

The input text consists of 45 phoneme symbols and 20 ac-
cent types. Size of each embedding layer is half size of English
Tacotron. The other parameters are used under the same condi-
tions as for the English.

4.3. Subjective evaluation of prosodic quality with or with-
out the context from previous units

As described earlier, we proposed two approaches for con-
necting the units: (1) “Independent” and (2) “Look back con-
text.”” We used the zero vector or the last vector from the pre-
vious input in the initial input vector of each unit in the de-
coder and performed an A/B preference test on these two ap-
proaches. For the evaluation, we concatenated the outputs of
each incremental synthesized speech into one utterance of a
pseudo sentence. Consequently, the resulting utterances may
have an unnatural prosodic connection. Evaluators listened to
the two synthesized speeches of full sentences without know-
ing whether those speech utterances were generated through
the incremental procedure with the context from previous units
or not. After that, they were requested to choose the sample
with more natural prosodic-connecting quality of synthesized
units within one full sentence. This evaluation was conducted
with ten native Japanese speakers for Japanese Neural iTTS,
and ten English speakers who have TOEIC ip® score higher
than 700 points (daily conversational level) for English Neu-
ral iTTS. There were 40 speech utterances (20 utterances per
method), which were presented in random order. An A/B-test
was performed that differentiated among three preference: (1)
the first synthesized speech has better natural prosodic quality,
(2) the second synthesized speech has better natural prosodic
quality, or (3) no difference. Each speech utterance could be
played as many times as the subjects wished. Fig. 3 shows the
result of the Japanese A/B-test. The results show the system
with the second approach (“Looking-back context™) that used
the log mel-spectrogram inputs from previous units had better
natural prosodic quality than only using the zero vectors. This
means that the quality improved when the model considered
the acoustic time-series. Based on this result, we selected this
second approach for further Japanese evaluation. On the other
hand, the result of the English AB-test shown in Fig. 4 reveals
that the system with the first approach (“Independent”) that used
the zero vector had better natural prosodic quality than only us-
ing the ero vectors. This means that the quality improved when
the model may not consider the acoustic time-series, otherwise

'Open Jtalk — http://open-jtalk.sourceforge.net/
2Mecab — https://taku910.github.io/mecab/
3Test of English for International Communication
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Figure 3: A/B preference test of Japanese prosodic quality with
or without the context from previous units in the initial input.
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Figure 4: A/B preference test of English prosodic quality with
or without the context from previous units in the initial input.

Table 1: A mean value of development loss for stop flag predic-
tion

Japanese | English
Independent 0.0115 0.0422
Look-back context | 0.0108 0.0385

this occurred poor stop flag prediction. Table 1 shows a mean
of evaluation loss corresponding to predict stop flag. As can be
seen, the English iTTS has poor prediction than the Japanese
model. This means that method with “Look-back context” may
cause a lousy estimation, and the error may propagate to the
next synthesis unit. Based on this result, we selected this first
approach “Independent” for further evaluation of the English
system.

4.4. Subjective evaluation of naturalness on the effect of
different lengths of the incremental unit

Next we conducted a mean opinion score (MOS) test as a
subjective evaluation for naturalness on the effect of different
lengths of incremental units. Subjects listened to each pre-
sented speech audio and rated the overall quality based on its
naturalness. A 5-point MOS scale was used, where 5 indi-
cated excellent speech utterances (very clear and completely
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Figure 5: Subjective evaluation for naturalness of Japanese syn-
thesized speech with various lengths of the synthesized unit.

natural sounds) and 1 indicated bad speech utterances (unclear
and completely unnatural sounds). We conducted the subjective
evaluations in Japanese with ten native speakers and in English
with ten speakers under the same conditions of English A/B
test. Here we have five iTTS systems with various lengths of
incremental units: one accent phrase, two accent phrases, three
accent phrases, half sentences, and full sentences. With natural
speech, there were six types of synthesized speech to be evalu-
ated. 78 speech utterances (13 utterances per synthesized unit)
were presented in random order. Each speech utterance could
be played as many times as the subjects wished.

Figure 5 and Figure 6 show the naturalness of the MOS
scores at each synthesized unit in Japanese and English Neural
iTTS respectively. Since we do not use a wavenet vocoder[26],
there has been a wide gap between generated speech and nat-
ural speech. Furthermore, it is natural that a shorter unit has
a larger decrease in quality. But note the size of the effect in
MOS quality due to different unit lengths. The shortest unit
length (one accent phrase or one word) reached almost two
points, and the synthesized speech quality improved from the
one unit to connecting two/three units (see the increasing MOS
score between two and three units). It is surprising that the
scores with half sentence units resemble the full sentence units
(non-incremental) in Japanese case. Also in the case of En-
glish, the scores with three words resemble the full sentence
units (non-incremental). The reason might be because we train
only a single model with full sentence data plus three parts of
the divided unit data for incremental and non-incremental cases.
Consequently, as the number of shorter unit data is larger than
the complete sentence data, the model may have a bias to the
shorter units. In the future, we will investigate this phenomenon
in more details. Towards development of real-time machine
speech interpreters, the results suggest to use Japanese Neural
iTTS with incremental synthesized units for between the three
accent phrases to the half-sentence units, and English Neural
iTTS with incremental synthesized units between two and three
words.

5. Conclusions

This paper presents the first end-to-end neural iTTS system.
Specifically, we proposed end-to-end neural iTTS architecture
with training and synthesis strategies to handle partial informa-
tion in real-time situations. To consider acoustic time-series,
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Figure 6: Subjective evaluation for naturalness of English syn-
thesized speech with various lengths of the synthesized unit.

we also proposed the initial input of each unit to be the last vec-
tor of the Mel-spectrogram from the previous unit. The exper-
iments have been done on Japanese and English datasets. We
found that using “Look-back context” approach could improve
the prosodic naturalness between synthesized units in Japanese.
Moreover, we explored the effect of various lengths of syn-
thesized units in the MOS quality for Japanese and English
end-to-end iTTS. Our result reveals that a synthesized unit be-
tween three accent phrases and half-sentences suggests an op-
timal synthesized unit in end-to-end Japanese iTTS, while En-
glish synthesized unit is shorter. In the future, we will further
investigate the performance of Neural iTTS, given the partial
output from the MT systems in a full-pledge real-time machine
speech interpreters.

6. Acknowledgements

Part of this work was supported by JSPS KAKENHI Grant
Numbers JP17H06101 and JP17K00237.

7. References

[1] E. Matusov, A. Mauser, and H. Ney, “Automatic sentence seg-
mentation and punctuation prediction for spoken language trans-
lation,” in in Proc. IWSLT, 2006, pp. 158-165.

[2] M. Pouget, O. Nahorna, T. Hueber, and G. Bailly, “Adaptive
latency for part-of-speech tagging in incremental text-to-speech
synthesis,” in 17th Annual Conference of the International Speech
Communication Association (Interspeech 2016), 2016, pp. 2846—
2850.

[3] F. Goldman-Eisler, “Segmentation of input in simultaneous trans-
lation,” Journal of psycholinguistic Research, vol. 1, no. 2, pp.
127-140, 1972.

[4] C. Fiigen, A. Waibel, and M. Kolss, “Simultaneous translation of
lectures and speeches,” Machine Translation, vol. 21, no. 4, pp.
209-252, Dec 2007.

[5] S. Bangalore, V. K. Rangarajan Sridhar, P. Kolan, L. Golipour,
and A. Jimenez, “Real-time incremental speech-to-speech trans-
lation of dialogs,” in Proceedings of the 2012 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, ser. NAACL HLT
’12, Stroudsburg, PA, USA, 2012, pp. 437-445.

[6] T.Fujita, G. Neubig, S. Sakti, T. Toda, and S. Nakamura, “Simple,
lexicalized choice of translation timing for simultaneous speech
translation,” in 74th Annual Conference of the International
Speech Communication Association (InterSpeech 2013), Lyon,



[7]

[8

[t}

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

France, August 2013, pp. 3487-3491. [Online]. Available:
http://www.phontron.com/paper/fujital 3interspeech.pdf

H. Shimizu, G. Neubig, S. Sakti, T. Toda, and S. Nakamura,
“Constructing a speech translation system using simulta-
neous interpretation data,” in I0th International Workshop
on Spoken Language Translation (IWSLT), Heidelberg, Ger-
many, December 2013, pp. 212-218. [Online]. Available:
http://www.phontron.com/paper/shimizu13iwslt.pdf

Y. Oda, G. Neubig, S. Sakti, T. Toda, and S. Nakamura, “Optimiz-
ing segmentation strategies for simultaneous speech translation,”
in The 52nd Annual Meeting of the Association for Computational
Linguistics (ACL), Baltimore, USA, June 2014, pp. 551-556. [On-
line]. Available: http://www.phontron.com/paper/odal4acl.pdf

N. Jaitly, Q. V. Le, O. Vinyals, I. Sutskever, D. Sussillo, and
S. Bengio, “An online sequence-to-sequence model using partial
conditioning,” in Advances in Neural Information Processing Sys-
tems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, Eds. Curran Associates, Inc., 2016, pp. 5067-5075.
[Online]. Available: http://papers.nips.cc/paper/6594-an-online-
sequence-to-sequence-model-using-partial-conditioning.pdf

J. Gu, G. Neubig, K. Cho, and V. O. Li, “Learning to
translate in real-time with neural machine translation,” in
Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Volume 1,
Long Papers. Valencia, Spain: Association for Computational
Linguistics, Apr. 2017, pp. 1053-1062. [Online]. Available:
https://www.aclweb.org/anthology/E17-1099

T. N. Sainath, C.-C. Chiu, R. Prabhavalkar, A. Kannan, Y. Wu,
P. Nguyen, and Z. Chen, “Improving the performance of on-
line neural transducer models,” in 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2018, pp. 5864-5868.

K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Kita-
mura, “Speech parameter generation algorithms for HMM-based
speech synthesis,” in Acoustics, Speech, and Signal Processing,
2000. ICASSP’00. Proceedings. 2000 IEEE International Confer-
ence on, vol. 3. IEEE, 2000, pp. 1315-1318.

T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kita-
mura, “Simultaneous modeling of spectrum, pitch and duration in
HMM-based speech synthesis,” in Sixth European Conference on
Speech Communication and Technology, 1999.

T. Baumann, “Decision tree usage for incremental parametric
speech synthesis,” in 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 1EEE, 2014,
pp. 3819-3823.

M. Pouget, T. Hueber, G. Bailly, and T. Baumann, “Hmm training
strategy for incremental speech synthesis,” in 16th Annual Con-
ference of the International Speech Communication Association
(Interspeech 2015), 2015, pp. 1201-1205.

T. Baumann and D. Schlangen, “Evaluating prosodic process-
ing for incremental speech synthesis,” in Thirteenth Annual Con-
ference of the International Speech Communication Association,
2012.

T. Yanagita, S. Sakti, and S. Nakamura, “Incremental TTS for
Japanese language,” Proc. Interspeech 2018, pp. 902-906, 2018.

Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J.
Weiss, N. Jaitly, Z. Yang, Y. Xiao, Z. Chen, S. Bengio,
Q. Le, Y. Agiomyrgiannakis, R. Clark, and R. A. Saurous,
“Tacotron: Towards end-to-end speech synthesis,” in Proc.
Interspeech 2017, 2017, pp. 4006-4010. [Online]. Available:
http://dx.doi.org/10.21437/Interspeech.2017-1452

J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang,
Z. Chen, Y. Zhang, Y. Wang, R. Skerrv-Ryan, R. A. Saurous,
Y. Agiomvrgiannakis, and Y. Wu, “Natural tts synthesis by con-
ditioning wavenet on mel spectrogram predictions,” 04 2018, pp.
4779-4783.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine trans-
lation by jointly learning to align and translate,” arXiv preprint
arXiv:1409.0473, 2014.

[21]

[22]

(23]

[24]

[25]

[26]

D. Griffin and J. Lim, “Signal estimation from modified short-
time fourier transform,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 32, no. 2, pp. 236243, 1984.

A. Tjandra, S. Sakti, and S. Nakamura, “Listening while speaking:
Speech chain by deep learning,” in 2017 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU). 1EEE, 2017,
pp. 301-308.

M. Suzuki, R. Kuroiwa, K. Innami, S. Kobayashi, S. Shimizu,
N. Minematsu, and K. Hirose, “Accent sandhi estimation of
tokyo dialect of Japanese using conditional random fields,” IEICE
TRANSACTIONS on Information and Systems, vol. 100, no. 4, pp.
655-661, 2017.

K. Tto, “The LJ speech dataset,” https://keithito.com/LJ-Speech-
Dataset/, 2017.

R. Sonobe, S. Takamichi, and H. Saruwatari, “Jsut corpus: free
large-scale japanese speech corpus for end-to-end speech synthe-
sis,” arXiv preprint arXiv:1711.00354, 2017.

A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio.” SSW, vol. 125,
2016.



