

Sequence-to-Sequence Learning via Attention Transfer for Incremental Speech Recognition

Sashi Novitasari¹, Andros Tjandra¹, Sakriani Sakti^{1,2}, Satoshi Nakamura^{1,2}

¹ Nara Institute of Science and Technology (NAIST), Japan

²RIKEN Center for Advanced Intelligence Project (RIKEN AIP), Japan {sashi.novitasari.si3, andros.tjandra.ai6, ssakti, s-nakamura}@is.naist.jp

Outline

I Background

I AT-ISR

III Experiments

IV Conclusion

I. Background

I Background

II AT-ISR

III Experiments

IV Conclusion

Simultaneous Speech Translation

- Translate incoming speech to the target language in realtime with low delay (incremental)
- Examples of use
 - Meeting
 - Lecture talk
 - Live video
- Automatic → require ASR that can recognize the speech immediately after the original timing

Automatic Speech Recognition

Generate transcription of a speech utterance

- Non-incremental ASR
 - Wait for the speech to finish first
 - State-of-the-art ASR: Att Enc-Dec (end-to-end)
 - → Not suitable for simultaneous translation

- Recognize without the need for waiting for the speech to finish
 [Selfridge et al., 2011]
- Part-by-part recognition
- → <u>Suitable for simultaneous translation</u>

Incremental Speech Recognition

- HMM-based ASR is incremental but not end-to-end
- Seq2seq ISR: train by learning input-output parts alignments (e.g. Neural transducer [Jaitly et al., 2016])
- End-to-end seq2seq ISR → more complex training than standard seq2seq ASR
 - o Learn the incremental step?
 - Ground alignments?
 - Generate it during training based on ISR model (multiple times)
 - Generate it by using external module (once)

Expensive (especially if module not available)

How to make reliable ISR with simple method?

Goal

Attention Transfer Incremental Speech Recognition (AT-ISR)

Simple training & recognition → Exploit attention-based seq2seq ASR

ISR architecture : Att Enc-Dec ASR (seq2seq)

Incremental step & alignment: Learn the <u>attention</u> knowledge from ASR

→ attention transfer

- Attention transfer: Attention knowledge transfer from teacher to student
 - Prev. works → image recognition tasks
 - Teach another model [Zaguruyko and Komodakis, 2017]
 - Domain transfer (image to video) [Li et al., 2017]
 - Has not been utilized for ISR construction.

AT-ISR

ISR that learns to mimic attention-based alignment from attention-based ASR

II. AT-ISR

I Background

II AT-ISR

III Experiments

IV Conclusion

AT-ISR Recognition Method

- Att Enc-Dec
- Input segment → W frames, consist of:
 - \circ M frames \rightarrow main input
 - \circ C frames \rightarrow contextual input (optional, adjacent to main input)
- Recognize segment-by-segment sequentially
 - For each recognition step:
 - **1. Encode** *W* speech frames (block)
 - **2. Decode** for the output that aligned to the main input block, until *end-of-block* token predicted or max. length reached
 - **2.1 Attend** the current input
 - 3. Shift the input window *M* frames
- How to learn the end-of-block (</m>)? \rightarrow Attention transfer

Encoder-Decoder with Attention Mechanism

3 main parts:

- Encoder
 Encode input features
- Decoder

 Decode encoded information into output
- Attention
 Calculate alignment score between encoder states (input) and decoder states (output)
 → attention matrix

Learning the Alignment

Attention Transfer for ISR

Train ISR (student) to learn the attention-based alignment from attention-based ASR (teacher)

Attention-based alignment

- 1 encoder state represents *M* input frames
 - \rightarrow 1 output aligned to *M* frames
- *M*: downsampling rate in encoder

Ground Alignment for ISR training

- Token aligned to an encoder state with highest attention alignment score (monotonic)
- </m> placed after each last-aligned token in a segment
- Alignment generation by teacher-forcing

char1, char2, char3 aligned to enc_state1 = frame block 1
(M = 8 frames)

 y_1 y_2 y_3 y_4

Decoder

LSTM

Char Emb.

Encoder

Bi-LSTM

Bi-LSTM

Bi-LSTM

Given

 $y_{2,1}$ $y_{2,2}$

 y_{2,K_2}

 y_{2,K_2-1}

Step n = 2

Speech frames $X = [x_1, x_2, ... x_5]$ Transcription $\mathbf{Y} = [y_1, y_2, ..., y_T]$

Non-incremental ASR P(Y | X)

AT-ISR

For each step *n*: $P(Y_n | X_n)$

where:

- $X_n = [x_{((n-1)w)+1}, ..., x_{nw}]$
- $Y_n = [y_{n,1}, ..., y_{n,Kn}]$
- $y_{n,Kn} = </m> token$
- $0 \le K_n \le K \le T$
- Y_n aligned to X_n (attention alignment)

 $x_1 \ x_2 \ x_3$

III. Experiments

I Background

I AT-ISR

III Experiments

IV Conclusion

13

Data and Features

Dataset (English)

Dataset	Speaker	Length	Expr. Sets (utterance)		
Dataset	Ореакет	(hour)	Train	Dev.	Test
LJ Speech [Ito et al., 2017]	1	24	12000	400	400
Wall Street Journal [Paul et al., 1992]	80 (si84) 280 (si284)	16 (si84) 80 (si284)	7000 (si84) 37000 (si284)	500 (dev93)	300 (eval92)

- Features
 - 80-mel spectogram
 - Window length 50 ms, shift 12.5 ms
- Output representation: Character (basic Latin alphabet)

Model Configuration

Non-incremental ASR & AT-ISR \rightarrow Att Enc-Dec (parameters based on [Tjandra et al., 2017]):

- Encoder
 - 1 FNN layer (256 units), 3 BiLSTM layers (256 units/LSTM layer)
 - Downsampling: 2 states for each BiLSTM layer
 - Final encoder states represent 8 frames each
 - ISR input block unit: 1 block = 8 frames = ~0.14 sec
- Decoder: 1 embedding layer (256 units), 1 LSTM layer (512 units)
- Attention: MLP-scoring with multi-scale alignment and contextual history [Tjandra et al., 2018]
- No language model

Experiment Scenario

Topline: Non-incremental recognition by teacher ASR

Baseline: Incremental recognition by teacher ASR (no attention transfer)

Experiments:

Mechanism configuration
 How to take encoder and decoder input, how to treat model states

Delay
 How the AT-ISR delay affects the performance

Experiment 1

Mechanism Configuration

Encoder Input

- Overlapping inputs
 - Include context blocks in addition to the main block (adjacent):
 - Look-back : prev. to the main block
 - Look-ahead : next to the main block
 - Output \rightarrow tokens that aligned to the main block

No overlapping input

Decoder Initial Input

Last token from the prev. step (before </m>)

Beginning-of-block <m>

Char

Experiment 1

Result

- AT-ISR model states:
 - Reset at the beginning of step
 - Keep the states from previous step
- ISR input segment size in <u>each step</u>:
 - 1 main block (~0.14 sec)
 - Overlap: +1 look-ahead block
- Best mechanism:
 - Encoding : Input overlap
 - Decoding : Last character from

prev. step as initial input

- Model states: Keep
- → as default mechanism for AT-ISR

Utterance-based CER% on LJ Speech Dataset

Enc-Inp	Dec. Initial Inp	Delay (sec)	Dev.	Test	
Topline ASR		6.54 (avg.)	2.84	2.78	
Baseline ISR		0.14	79.63	80.34	
AT-ISR - reset state					
No overlap	<m></m>	0.14	32.51	32.35	
No overlap	prev. char	0.14	26.15	26.52	
Overlap	<m></m>	0.24	23.74	23.40	
Overlap	prev. char	0.24	13.40	14.22	
AT-ISR - keep state					
No overlap	<m></m>	0.14	24.35	24.44	
No overlap	prev. char	0.14	22.69	23.04	
Overlap	<m></m>	0.24	8.83	8.16	
Overlap	prev. char	0.24	8.82	8.39	

Experiment 2 Delay: Main block

- LJ Speech dataset
- Tradeoff: Higher delay → higher performance
- Insignificant improvement after certain delay conf. \rightarrow shortest delay with best performance

Impact of Main Input Block Size on Utterance-based CER AT-ISR Input: [N main + 1 ahead] blocks/step

Experiment 2

Delay: Context blocks

- LJ Speech, utterance-based CER
- Without context block → CER 22.7% (dev.)
- Context blocks **help** the recognition, especially **look-ahead** blocks

Impact of look-back block

AT-ISR input: [N back + 1 main + 1 ahead] blocks/step

Impact of look-ahead block AT-ISR input: [1 main + N ahead] blocks/step

*1 block = 8 frames = ~0.14 sec

Performance on Multi-speaker Data

Utterance-based CER (%) on eval92 Set

Non-incremental ASR (Topline)					
Model		Delay	si84	si284	
CTC [Kim et al., 2017]		7.5 sec (avg.)	20.34	8.97	
Att Enc-Dec Content [Kim et al., 2017]			20.06	11.08	
Att Enc-Dec Location [Kim et al., 2017]			17.01	8.17	
Join CTC+Att (MTL) [Kim et al., 2017]			14.53	7.36	
Att Enc-Dec (Teacher)			17.05	6.80	
AT-ISR (1 main input block/step)					
Look-back/step	Look-ahead/step	Delay	si84	si284	
0 block	1 block	0.24 sec	30.81	19.78	
0 block	4 block	0.54 sec	18.05	9.06	

^{*1} block = 8 frames = ~0.14 sec

WSJ dataset

Train set:

- si84 : 80 speakers- si284 : 280 speakers

 WSJ si284 model → delay 0.54 sec, CER difference to teacher ~2%

 AT-ISR able to perform closely to teacher on multi-speaker data

IV. Conclusion

I Background

I AT-ISR

III Experiments

IV Conclusion

22

Conclusion

- Incremental speech recognition with AT-ISR -- ISR that learned the same attention alignment as the teacher non-incremental ASR
- AT-ISR able to perform closely to the teacher by incrementally recognizing short input segments (low latency and reliable)
 - LJ Speech CER → teacher 2.84%; student 4.45% (delay 0.54 sec)
 - \circ WSJ CER \rightarrow teacher 6.80%; student 9.06% (delay 0.54 sec)
- Optimum AT-ISR performance achieved by, for each step, including few ahead blocks and setting the last character from the last step as the initial input in decoding

Thank You

Example

Non-incremental ASR

Text generation:

Example of alignment index calculation for the 6th character 'y' $(k \rightarrow 1 \text{ enc state} = 1 \text{ frame block} = W \text{ frames (downsample)})$

AT-ISR

Training: Encode *W* frames, decode aligned chars+</m> as the target

Final output: f

Text generation: Encode *W* frames and decode until </m>, </s>, or reach max. length

TED-LIUM

- Unk. word: Rate of words that does not exists in the train data (eval. set original text = 1.55%)
- Character-to-subword:
 - Sentencepiece:
 - Wait for 1 word then convert it into subwords (1 word = 8 characters (avg.))
 - Same CER, WER, and unk. word rate as the character-level ISR
 - Seq2seq:
 - Incremental: convert 8 characters by looking 8 characters ahead
 - Speech-character and charactersubword models trained separately

Performances (%) on TED-LIUM release 1

ISR input-output	CER	SWER	WER	Unk. word	
Full-utterance ASR (avg. delay: 7.58 sec)					
sp-ch-sw (sentencepiece)	15.21	20.16	27.37	3.02	
sp-ch-sw (seq2seq)	15.81	20.46	28.32	1.03	
sp-sw	13.35	18.91	23.98	0.62	
ISR (input segment: 1 main + 4 ahead bocks →delay: 0.54 sec)					
sp-ch-sw (sentencepiece)	21.00	31.87	41.10	11.7	
sp-ch-sw (seq2seq)	22.36	27.53	39.71	1.34	
sp-sw	21.28	25.70	36.78	0.66	
ISR (input segment: 4 main + 4 ahead bocks → delay: 0.84 sec)					
sp-ch-sw (sentencepiece)	16.22	23.11	31.04	5.19	
sp-ch-sw (seq2seq)	17.99	22.60	31.80	1.66	
sp-sw	15.20	19.88	28.26	1.04	

sp : speech features

ch : character sw : subword

sp-ch-sw: char-level ISR and character-subword model