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Abstract

Attention-based sequence-to-sequence automatic speech recog-

nition (ASR) requires a significant delay to recognize long ut-

terances because the output is generated after receiving entire

input sequences. Although several studies recently proposed se-

quence mechanisms for incremental speech recognition (ISR),

using different frameworks and learning algorithms is more

complicated than the standard ASR model. One main reason

is because the model needs to decide the incremental steps and

learn the transcription that aligns with the current short speech

segment. In this work, we investigate whether it is possible to

employ the original architecture of attention-based ASR for ISR

tasks by treating a full-utterance ASR as the teacher model and

the ISR as the student model. We design an alternative student

network that, instead of using a thinner or a shallower model,

keeps the original architecture of the teacher model but with

shorter sequences (few encoder and decoder states). Using at-

tention transfer, the student network learns to mimic the same

alignment between the current input short speech segments and

the transcription. Our experiments show that by delaying the

starting time of recognition process with about 1.7 sec, we can

achieve comparable performance to one that needs to wait until

the end.

Index Terms: incremental speech recognition, attention-based

sequence-to-sequence model, attention transfer

1. Introduction
The demand for speech translation systems at meetings and lec-

tures continues to increase. Since the length of complete sen-

tences in such talks can be long and complicated, simultaneous

speech translation is required to mimic human interpreters and

translate the incoming speech stream from a source language to

target language in real time. One challenge for achieving simul-

taneous speech translation is the development of incremental

ASR.

Researchers have been working on speech recognition tech-

nology for decades. A number of techniques of real-time ASR

exist, especially in the context of statistical ASR with a hid-

den Markov model (HMM) [1, 2, 3]. However, many current

state-of-the-art ASR systems rely on attention-based sequence-

to-sequence deep learning frameworks [4, 5]. Today’s atten-

tional mechanisms are based on a global attention property that

requires the computation of a weighted summarization of the

entire input sequence generated by the encoder states. This

means that the system can only generate text output after receiv-

ing the entire input speech sequence. Consequently, utilizing it

in situations that require immediate recognition is difficult.

Several studies proposed local attention mechanisms [6, 7]

that limit the area explored by the attention by largely reducing

the total training complexity without reducing the latency. For

work that enables incremental recognition of speech, Hwang

and Sung employed a unidirectional RNN with a CTC acoustic

model and a unidirectional RNN language model [8]. To avoid

continuous output revision, they also proposed depth-pruning in

the beam-search during the output generation. Jaitly et al. pro-

posed a neural transducer framework [9] that incrementally rec-

ognizes the input speech waveforms. The formulation required

inferring alignments during training, and they utilized a dy-

namic programming algorithm to compute “approximate” best

alignments in each speech segments. Their model is strongly

related to a sequence transducer that used connectionist tempo-

ral classification (CTC) [10, 11]. The improved version of a

neural transducer, which has also been discussed [12], allows

the attention mechanism to look back at many previous chunks

without introducing additional latency.

However, most ISR models utilize different frameworks

and learning algorithms that are more complicated than the stan-

dard ASR model. One main reason is because such models need

to decide incremental steps and learn the transcription that is

aligned with the current short speech segment. In this work, we

propose attention-transfer ISR (AT-ISR) by the following:

1. employing the original architecture of an attention-based

ASR for ISR tasks but with shorter sequences by treating

the full-utterance ASR as the teacher model and the ISR

as the student model.

2. utilizing attention transfer so that the student ISR model

mimics the speech-text alignment produced by the stan-

dard ASR model.

3. investigating the impact of the input size to achieve the

shortest speech chunks that can still produce reliable text

output.

2. Related Works
A knowledge distillation method trains a student model, which

is a simplification of a more complex model that acts as a

teacher [13, 14]. A student network is commonly constructed

as a compression version that is shallower or thinner that then

trains the network to mimic the original teacher network by

minimizing the loss (typically L2-norm or cross-entropy) be-

tween the student and teacher output.

Another approach is attention transfer, which was recently

proposed by Zagoruyko and Komodakis [15] for image process-

ing. Its basic idea is to ensure the spatial distribution of the stu-

dent and teacher activations that are similar at selected layers in

the network. Each layer in the student network is trained to fo-

cus on the same things as in the teacher network. Various tasks

have also utilized attention transfer [16, 17], but not yet in ASR.

In this work, we applied attention transfer in speech recog-

nition task by treating the full-utterance ASR as the teacher



Figure 1: Training method of proposed AT-ISR: Each recognition step in ISR takes an input segment. For each step, ISR refers the

attention alignment from non-incremental ASR model. If current true output is aligned to the current segment, ISR performs a decoding

step for it. If previous true output is the last character that should be aligned to the current segment, ISR decodes for the end-of-block

</m> and moves to recognize the next segment.

model and the ISR as the student model. Instead of using a thin-

ner or shallower model, however, we design an alternative stu-

dent network that retains the original architecture of the teacher

model but with shorter sequences (only a few encoder and de-

coder states). In this way, no new redesign is needed for the

ISR, and some hyperparameters can be used without chang-

ing them. With attention transfer, the student network learns

to mimic the same alignment between the current input short

speech segments and the transcription.

3. Overview of Sequence-to-Sequence ASR
Architecture

Our works are based on the standard non-incremental character-

level sequence-to-sequence ASR [18, 19]. It consists of en-

coder, decoder, and attention modules that can directly model

the conditional probability of P (Y|X), where X is a sequence

of the framed speech features with length S and Y is a sequence

of the characters with length T .

In this network, the encoder transforms the input speech

sequence X to hidden representative information he =
[he

1, ..., h
e
S ] that will later be processed by the decoder. If down-

sampling is applied in the encoder, each hidden state represents

several number of input frames.

The decoder attempts to predict the target sequence prob-

ability pyt , given the previous output Y<t, the current context

information ct and the current decoder hidden state hd
t . The

context information ct is produced by attention modules [20] at

time t based on encoder and decoder hidden states with follow-

ing formula:

ct =
S
∑

s=1

at(s) ∗ h
e
s (1)

at(s) =
exp(Score(he

s, h
d
t ))

S
∑

s=1

exp(Score(he
s, h

d
t ))

(2)

The scoring for the context can be done using one of the

following scoring functions [21]:

Score(he
s, h

d
t ) =











〈he
s, h

d
t 〉, dot product

he⊺
s Wsh

d
t , bilinear

V ⊺

s tanh(Ws[h
e
s, h

d
t ]) MLP,

(3)

and Score is (RM × R
N ) → R, where M is the number of

encoder hidden units and N is the number of decoder hidden

units. The model loss function is formulated as:

ŁASR(Y,pY ) = −
1

T

T
∑

t=1

C
∑

c=1

✶(yt = c) log pyt [c], (4)

where C is the number of output classes.

4. Proposed Sequence-to-Sequence ISR
The proposed AT-ISR retains the original ASR architecture and

performs several recognition steps incrementally with shorter

sequences as shown in Fig. 1. In the character-based full-

utterance ASR, a sequence of speech frames X with length S



transcribed as a character sequence Y = [y1, y2, ..., yT ] with

length T . In the AT-ISR, for each recognition step, the model

takes a segment of X with length W where (W < S) and out-

puts an aligned segment of Y = [yn,1, yn,2, ..., yn,Kn
] with

maximum length K where (Kn ≤ K < T ) and n is the step

index. Here, the window size W is equal for all steps.

In the AT-ISR training, we treat the full-utterance ASR as

the teacher model and the ISR as the student model. With atten-

tion transfer, the student network will learn to mimic the same

alignment between the input segments and the transcription as

the teacher network. Therefore, inferring alignments during

training is not necessary anymore.

During the training, for each incremental step n, AT-ISR

learns to decode the characters that scored the highest mono-

tonic alignment score to the current input segment or blocks

from the distilled teacher’s attention matrix. Attention matrix

that generated by teacher consists of alignment scores of each

character to each frame block. Therefore, the AT-ISR input seg-

ment size W will be equals to 1 frame block or multiple of it.

In training, if the decoding in AT-ISR reaches the last char-

acter that aligned to the current input segment, AT-ISR will

learn to output an end-of-block symbol </m> then move to

the next segment. In the actual recognition with AT-ISR, the

decoding in each step n will be done until the </m> symbol is

predicted or the output length in step n reaches K.

To accommodate the connection between each recognition

step, we slightly modify the encoder and decoder parts:

• Encoder

The modification in the encoder is done on the input side.

AT-ISR encodes W frames in each step and the atten-

tion transfer during training will force the outputs to be

aligned into W frames. As a character might actually be

aligned to frames longer than W , we investigated two in-

put settings of encoder: allow the model to look-back or

look-ahead the main input block and not. If these addi-

tional context frames are included, the outputs of a step

are the characters that aligned to the main input block.

• Decoder

We used <s> and </s> symbols to define a sentence’s

beginning and end. In incremental recognition, we used

</m> symbols in the transcription to define the end of

the block. In the decoding of the first input segment, AT-

ISR takes <s> symbol as the decoder’s initial input. For

the decoding of subsequent segments, we experimented

on two types of initial input: beginning-of-block <m>

and the last output from the previous incremental step.

Similar to the mechanism in the neural transducer, we

allowed the model to produce no output from the current

input segment.

5. Experimental Set-up
5.1. Model Configuration

The same attention-based encoder-decoder architecture is used

for the non-incremental ASR and AT-ISR systems. The encoder

part consists of an FNN layer and three bidirectional LSTM lay-

ers with a downsampling rate of two states in each of the LSTM

layers. The first layer in the encoder takes a sequence of framed

speech and outputs 512 features, and each LSTM layer outputs

256 features. Further details of our implementation of attention-

based encoder-decoder architecture can be found here [22].

The encoder resulted in downsampled states with down-

sampling rate of eight. Therefore, in this experiment, a basic

block of speech consists of eight frames (137.5 ms). The atten-

tion matrix from the non-incremental ASR aligned each charac-

ter to each encoder state that represents eight frames.

The decoder side consists of an embedding layer, an LSTM

layer with an attention mechanism, and a softmax layer. Here,

we also applied an attention mechanism with an MLP-scoring

function that utilized previously proposed multi-scale alignment

and contextual history [23]. This mechanism maintains the his-

tory of the location and the contextual information of the previ-

ous time-steps, which improved the scoring function more than

the standard attention. The standard attention applies the multi-

scale convolution of the previous attention vector to the current

decoder state.

5.2. Dataset and Features

Due to resource constraints, we first used the LJ Speech corpus

[24] to find the best configuration of our ISR model. Then we

applied the well-performed configurations on the Wall Street

Journal (WSJ) corpus [25].

The LJ Speech dataset consists of 13.100 English speech

utterances spoken by a single speaker (24 hours of speech). We

simply divided the LJ Speech data into 12.314, 393, and 393

utterances as training, development, and test sets. The complete

data of the WSJ corpus are contained in an SI284 (SI84+SI200)

dataset. We followed the Kaldi [26] recipe for the training (si84

and si284), development (dev93), and test (eval92) sets. SI84

consists of 7138 utterances (16 hours of speech) spoken by 83

speakers and SI200 consists of 30,180 utterances (66 hours of

speech) spoken by 200 speakers without any overlap with the

speakers of SI84.

All of the utterances in both datasets have 16-kHz sampling

rates. From the speech utterances, we extracted the 80-Mel

spectrogram for each frame with a window length of 50 ms that

shifted by 12.5 ms from the previous frame.

6. Experiment Results
Our topline is the standard non-incremental ASR that conducted

a greedy search for the decoding. We used an ISR without at-

tention transfer learning as our baseline. The baseline ISR was

trained identically as the non-incremental ASR and then tested

incrementally by adding a zero vector at the end of the input

segment without input overlap. Here, the decoding of each seg-

ment finished when the </s> or <blank> symbol (included in

the vocabulary) predicted.

First, we compared the performances of topline ASR, base-

line ISR, and AT-ISR as shown in Table 1. Here we also investi-

gated the performance of the AT-ISRs with or without overlap-

ping input as well as the different symbols for decoding initial

input. One input segment in all ISRs in Table 1 consist of one

main input block. In the models that allow input overlap, the

input segment also includes one block ahead of the main block,

resulting in 16 input frames. All of the models were evaluated

based on the character error rate (CER).

The results in Table 1 show that the AT-ISR models sig-

nificantly outperformed the baseline and achieved CER below

10%, similar to the topline. Among the proposed models, keep-

ing the model states and transferring the learning greatly im-

proved the performance. This configuration then applied in the

further experiments. The lowest CER was achieved by allowing

the model to overlap the input and by feeding the last character

from the previous step as the decoder’s initial input.

We further investigated the impact of the size of the addi-

tional blocks in the AT-ISR. Our results in Table 2 reveal that



Table 1: CER (%) comparisons among topline ASR, baseline

ISR, and AT-ISR with different approaches on LJ Speech

Enc-Inp Dec-Inp Delay (sec) Dev. Test

Topline ASR 6.54 (avg) 2.84 2.78

Baseline ISR 0.14 79.63 80.34

AT-ISR - reset state

No overlap <m> 0.14 32.51 32.35

No overlap last prev. char 0.14 26.15 26.52

Overlap <m> 0.24 23.74 23.40

Overlap last prev. char 0.24 23.40 14.22

AT-ISR - keep state

No overlap <m> 0.14 24.35 24.44

No overlap last prev. char 0.14 22.69 23.04

Overlap <m> 0.24 8.83 8.16

Overlap last prev. char 0.24 8.82 8.39

Table 2: AT-ISRs CER (%) with different number of additional

blocks in each step on LJ Speech (1 main block=137.5ms)

Look-back Look-ahead Delay (sec) Dev. Test

Non-incremental ASR 2.84 2.78

ISR

0 block 0 block 0.14 22.69 23.04

0 block 1 block 0.24 8.82 8.39

0 block 2 blocks 0.34 5.68 5.32

0 block 4 blocks 0.54 4.45 4.33

1 block 1 block 0.34 7.60 6.86

2 blocks 1 block 0.44 7.03 6.80

4 blocks 1 block 0.64 7.09 6.89

looking ahead from the main block resulted in a better perfor-

mance than looking back. The AT-ISR maintains the informa-

tion from the previous steps, thus adding the previous block to

the main block is not necessary. On the contrary, the ahead

blocks able to support a better understanding of the main block

by providing new information. By looking four blocks ahead,

the AT-ISR achieved a performance with a smallest difference

to the non-incremental ASR.

We also investigated the impact of the size of the main block

in each recognition steps. Fig. 2 illustrates the performances of

the proposed model where a single recognition step accommo-

dates several blocks. In this figure, each model allows looking

ahead to another block. The results show a clearer trade-off

between time and performance. Although significant improve-

ment happened until delay of 1.7 seconds, it did not happen

similarly on subsequent sizes. Here, we investigated on how to

reduce the delay without causing a significant decrease in ASR

performance. Our experiments show that by delaying the start-

ing time of recognition with about 1.7 sec, we can achieve a

comparable performance to one that needs to wait until the end.

This indicates that the student model performance with atten-

tion transfer approached that of the teacher model.

From our experiments on LJ Speech, we learned that the

optimum performance in reasonable latency achieved the fol-

lowing: (1) included ahead blocks, (2) set the last character of

the previous step as the decoder input, (3) kept the recurrent

states across the steps, and (4) utilized the distilled knowledge

of the attention matrix in the training. With this configuration,

Figure 2: AT-ISRs performance on LJ Speech with different

main block size, 0 look-back, and 1 look-ahead block in each

step. (A = average block number of an utterance in LJ Speech)

we trained the ISR models with the WSJ dataset with 1 block

as the main block for short latency. The results on eval92 can

be seen in Table 3. Here, we also compared our results with

several published models of non-incremental ASR. Our results

demonstrate that the AT-ISR can still performed with compara-

ble performance with other published models. In order to bal-

ance the performance and latency, our experiments show that

AT-ISR delay 0.54 sec or input segment with one main input

block and four look-ahead blocks in each recognition step are

sufficient.

Table 3: CER (%) on eval92 set from topline ASR and AT-ISR

models trained on WSJ-SI84 and WSJ-SI284.

Models WSJ CER (%)

Non-Incremental ASR (Topline) SI84 SI284

CTC [4] 20.34 8.97

Att Enc-Dec Content [4] 20.06 11.08

Att Enc-Dec Location [4] 17.01 8.17

Joint CTC+Att (MTL) [4] 14.53 7.36

Att Enc-Dec (ours) 17.05 6.80

AT-ISR

Look-back Look-ahead SI84 SI284

0 block 1 block 30.81 19.78

0 block 4 blocks 18.05 9.06

*Same delay configuration as Table 2

7. Conclusions
We constructed a character-level AT-ISR framework that was

trained with the original architecture of the attention-based

sequence-to-sequence ASR model. The main difference is that

it consists of shorter sequences than the standard architecture.

No new redesign was needed for the ISR, and some hyperpa-

rameters can be used without any changes. Transfer learning

treats the non-incremental ASR model as the teacher and the

ISR as the student model. Student ISR learns the same attention

alignment as the teacher model’s, allowing a simple mechanism

in the incremental recognition. Various types of models have

been explored. The optimum performance was achieved by in-

cluding a few ahead blocks, setting the last character of the last

set as the decoder input, keeping the recurrent states across the

steps, and utilizing the attention transfer.
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