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Abstract

As synthesized speech technology becomes more widely used,
the synthesized speech quality must be assessed to ensure that it
is acceptable. Subjective evaluation metrics, such as mean opin-
ion score (MOS), can only provide an overall impression with-
out any further detailed information about the speech. There-
fore, this study proposes predicting speech quality using elec-
troencephalographs (EEG), which are more objective and have
high temporal resolution. In this paper, we use one natural
speech and four types of synthesized speech lasting two to six
seconds. First, to obtain ground truth of MOS, we gathered ten
subjects to give opinion score on a scale of one to five for each
recording. Second, another nine subjects were asked to measure
how close to natural speech each synthesized speech sounded.
The subjects’ EEGs were recorded while they were listening to
and evaluating the listened speech. The best accuracy achieved
for classification was 96.61% using support vector machine,
80.36% using linear discriminant analysis, and 59.9% using
logistic regression. For regression, we achieved root mean
squared error as low as 1.133 using SVR and 1.353 using linear
regression. This study demonstrates that EEG could be used to
evaluate the perceived speech quality objectively.

Index Terms: EEG; synthesized speech; text-to-speech; quality
assessment

1. Introduction

Rapidly spreading modern systems such as mobile assistants,
smart devices, and navigation systems mostly have one thing in
common: they can synthesize speech. Unlike human speech,
machine synthesized speech sometimes includes unnaturalness
such as missing pitches, mispronunciations, and strange pauses.
Hence, the synthesized speech quality must be evaluated.

The naturalness of synthesized speech is usually measured
objectively or subjectively. Subjective measurement usually
involves calculating opinion scores (e.g., mean opinion score
(MOS) and preference tests) [1]. Although this approach might
be the most natural method, it can only provide an overall
impression without any further detailed information about the
speech.

Objective measurement is usually done by a computer.
There are several method to evaluate the synthesized speech
quality such as calculating the RMSE of FO, unvoiced/voiced
(U/V) prediction errors, and several other methods. For exam-
ple, by using linear regression, a study by [2] shows decent cor-
relation between subjective Diagnostic Acceptability Measure
(DAM) with cepstral distance (CP) and Mel-cepstral distance
(MCD). However, the exact relationship between acoustic fea-
tures and perceived quality is yet to be understood [3]. There-
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fore, even though the predicted quality is high, the naturalness
of the synthesized speech might not meet human expectations.

This study proposes utilizing neurophysiological signals
such as brain activity [4, 5, 6], to understand how listeners re-
act towards synthesized speech of differing quality. A previ-
ous study showed that electroencephalographs (EEG) could re-
veal the correlation between pitch emphasis and brain activity
[7]. In [8], they proposed brain computer interface-based equa-
tion to predict quality of experience MOS, and achieved 1.00 of
root mean squared error (RMSE) between actual and predicted
MOS. In addition, by using tensor representation of all chan-
nels and all frequency bands, a study conducted by [9] shows
that EEG signals could be used to predict MOS, valence, and
arousal within the same subject. We also previously examined
which EEG electrodes, frequency bands, and time length sig-
nificantly represent perceived speech quality in Japanese using
the generalized fisher scores [10].

In this paper, we focused more on whether machine learn-
ing algorithms could objectively evaluate different speech qual-
ities from EEG. To do so, we compared several traditional clas-
sification and regression models with different frequency bands
within 4-38 Hz. We used support vector machine (SVM), linear
discriminant analysis (LDA), and logistic regression (LR) for
the classification. For the regression, we used linear regression
and support vector regression (SVR).

2. Synthesized Speech Materials

To construct synthesized speech, we generally need to extract
speech parametric representation (i.e., mel-cepstrum) and exci-
tation parameters (i.e., log FO) from an original speech database.
Then, by using a set of generative models, those parameters are
modelled. This study used a deep neural network (DNN) as a
generative model that learns the correspondence between text
and speech in an attempt to generate speech parameters given a
word sequence. Finally, speech waveforms are reconstructed
from the parametric representations of speech (mel-cepstrum
and log FO) using a vocoder. LF0 is a measure of fundamental
frequency in speech or the voice pitch. Mel-cepstrum represen-
tation is a parametric model for the spectral envelope of speech
in which frequency resolution mimics the human auditory sys-
tem. The content of the speech is daily conversation sentences,
for example:

”Tokaide wa deau hito no hotondo ga mishiranu hitodearu.”
(Romaji)

”Most of the people we meet in the city are strangers.” (En-
glish translation)

http://dx.doi.org/10.21437/Interspeech.2019-2059



2.1. Speech Stimuli

This study used 53 single-speaker Japanese sentences recorded
in natural speech and four types of synthesized speech with 16
kHz sampling rate. The used speech length ranged from two
to six seconds with an average of 3.43 seconds and a standard
deviation of 1.35 seconds.

2.1.1. Natural speech

Natural speech was the original recording of human speaker.

2.1.2. Analysis-synthesized speech

Analysis-synthesized speech was not generated using a gener-
ative model but rather reconstructed using original features of
natural speech. Speech features (mel-cepstrum and LFO) were
extracted from the natural recordings and then transformed back
into speech waveforms. It was used as the baseline of generated
DNN-based synthesized speech.

2.1.3. DNN-based speeches

Three types of speech are generated using predicted features
from the generative model that generates both LFO and mel-
cepstrum. In the last step, the waveform is generated using the
vocoder on the basis of the predicted features. In this study, we
prepared DNN-based speech synthesis based on based on [11].

e Synthesized LFO. This is speech waveforms recon-
structed using generated LFO and natural mel-cepstrum
assuming that the model predicts the mel-cepstrum per-
fectly.

¢ Synthesized MCC. This is speech waveforms recon-
structed using generated mel-cepstrum and natural LFO
assuming that the model predicts the LFO perfectly.

* Synthesized LFO and MCC. This is speech wave-
forms reconstructed using both generated LFO and mel-
cepstrum. The real Text-to-Speech (TTS) system usually
uses both generated parameters.

2.2. Mean Opinion Score

In this study, MOS is used to subjectively observe how the qual-
ity of each speech type is distributed. For MOS, we collected
opinion scores from ten subjects: nine males and one female
aged 24 to 27 years old. All subjects had normal hearing with-
out hearing aids. We asked the subjects to give scores ranging
from (1) very bad to (5) very good. The speech used in both the
MOS collection and EEG recording session was the same. Fig-
ure 1 represents how subjects differentiated the quality among
the categories. Both synthesized LFO and synthesized MCC
were scored similarly while natural and analysis-synthesized
were scored significantly higher. We found a statistical signif-
icance for all comparisons using paired t-tests with Bonferroni
correction except for Synthesized LFO and Synthesized MCC
(a=0.05).

3. Methods

We collected the subjects’” EEGs while they were listening to
natural and synthesized speech. We used MNE python library
[12, 13] to pre-process the recorded EEGs and finally used the
Scikit-Learn [14] python library to perform classification and
regression.
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Figure 1: Boxplot of MOS on every speech type.

3.1. EEG Data Collection
3.1.1. Subjects

This research was approved by the ethical committee of the
Nara Institute of Science and Technology. We collected EEGs
from another ten subjects, seven males and three females, aged
23 to 35 years old. Subjects were provided with a brief expla-
nation about the experiment. All subjects were right-handed
native Japanese speakers without any medical history of brain
injuries or severe brain trauma.

3.1.2. Experiment Procedure

During the EEG recording session, all 53 sentences were played
in randomized order. For each loop, the natural speech was
firstly played, followed by four randomly ordered types of
synthesized speech of the same sentence as shown in Fig-
ure 2. While listening to the natural speech, subjects were
asked to remember how it sounds and when the synthesized
speeches started to play, subjects were asked to remember how
it sounded, and when the synthesized speech started to play, the
subjects were asked to press a button every time they heard parts
that sounded bad.

EEG experiment was done in a dimly lit soundproof room.
The subjects listened to the speech recordings using an in-ear-
monitor earphone setup. Finally, the subjects were told to avoid
blinking and making excessive body movement while listening
to the speech to minimize unnecessary noises in the recordings.
EEG data were then recorded throughout the experiment using
ActiCAP with 32 scalp channels and a BrainAmp DC, both
from Brain Products. Figure 3 shows the diagram of the full
recording and pre-processing procedure.

3.1.3. Pre-processing

The recorded EEG was referenced on the FCz channel during
recording session and re-referenced using common average ref-
erence. The band-pass filter from 0.5 to 40 Hz was applied
followed by down-sampling from 1000 to 250 Hz. The down-
sampled EEG was then split per epoch to remove breaks and
pauses during the recording, leaving only epochs when the sub-
jects listened to the speech. Epochs of amplitudes above 400
uV or below -400 1V were rejected assuming they were con-
taminated with large amplitude artifacts. One subject was re-
moved from the analysis process due to more than 10% of his
recorded samples being removed during this procedure. Each
epoch aligns to the corresponding speech record played. Since
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Figure 2: EEG Scenario layout. 53 sentences are played in random order. Each sentence will began with a natural speech marked with
a ‘“+’ sign on the screen followed by four types of randomly ordered synthesized speech with a blank screen. Every five sentences, the
subject were given a break time of which the length depended on the subject and therefore varied.
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Figure 3: Complete EEG processing diagram. (a) is speech stimuli, (b) is recording process, and (c) is recorded EEG from each
electrodes. The recorded EEG was then pre-processed with re-referencing, band-pass filtering, and down-sampling and then split per
epoch. Every epoch, the EEG was divided into four frequency bands (d) and saved as a dataset (e).

the lengths of the epoch varied, we zero-padded the EEG to the not better than the previously mentioned methods. Moreover,

maximum record length. due to large input dimensions, MLP took tremendous amount
of time to train. For the LR, L.1 regularization was used because

3.2. Wavelet transform and feature extraction our EEG data is sparse which the important data is relatively
small in comparison to the total input, therefore many input fea-

The epochs were converted from the time-amplitude domain tures should be reduced. We compared each model by 15-fold

into time-frequency representation using Morlet wavelet trans- cross validation. Finally, we investigated which frequency band

form [15] and then separated on the basis of four frequency and the models produce highest overall accuracy.

bands; theta (4-8 Hz), alpha (8-13 Hz), beta (13-31 Hz), and

gamma (31-38 Hz). The final product of this procedure is four 3.4. Regression

datasets based on the previously mentioned frequency bands.
Each dataset contains five types of speech with 53 epochs each.
Each record has six second data from 32 EEG electrodes. The
exsample of EEG comparison at one channel before frequency
band separation is shown in Figure 4. This shows visualization
of synthesized speeches in terms of time-frequency analysis of i . ;
the EEG. For example, we can see that strong EEG responses to from EEG using the regression method. The regression was

specific frequency (around 10-20 Hz) are observed in the syn- done per frequency ba}nd. For each frequency band, we tried
thesized LFO. to predict each record’s MOS. Each record was scored on the

basis of the MOS of ten people as described in section 2.2. We
used L1 regularized multiple linear regression and SVR with a
7-degree sigmoid kernel. For each method, we compared each
frequency band and models to find a best combination which
produces lowest RMSE score.

In evaluating the synthesized speech quality, the classification is
not sufficient enough because it can only categorize the speech
quality. On the other hand, regression is able to predict slight
differences in between the categories. On the basis of the classi-
fication results, we attempted to predict the actual MOS scores

3.3. Classification

The classification was done for every comparison between nat-
ural speech and the four types of synthesized speech: natural
and analysis synthesis (reconstructed LFO and MCC), natural
and synthesized LF0, natural and synthesized MCC, natural and 4. Results
synthesized LF0 and MCC. For each frequency band, we com- . .

. . 4.1. Classification
pared the natural speech type with every synthesized speech

type. This study is focused on finding out which classifier and Table 1 show accuracy results of four frequency bands for LDA,
regression method works best for evaluating synthesized speech SVM, and LR respectively. The results show that for the clas-
quality. For the classification task, we used LDA, L1 regular- sification task, in general, alpha band is best for differentiat-
ized LR, and SVM with a 7-degree sigmoid kernel. We also ing between natural speech and the four types of synthesized
tried using multi-layer perceptron (MLP), but the results were speech.

1230



Table 1: Classification results comparison.

Nat vs. ana-syn Nat vs. syn LFO Nat vs. syn MCC Nat vs. syn LFO and MCC

TyPe — R IDA SYM | LR DA SVM | LR LDA SVM | LR LDA SVM

Theta 54.13 7150 49.66 | 59.44 7375 96.61 | 59.99 7579 20.99 | 59.30 73.27 35.00
Alpha 5328 76.87 73.66 | 53.56 7899 76.27 | 53.64 79.39 67.55 | 62.29 79.36 54.77
Beta 49.73 8036 2544 | 51.33 7538 95.70 | 51.08 7822 18.77 | 56.28 76.71 85.00
Gamma 5899 70.26 80.00 | 55.03 75.78 47.90 | 50.59 6894 29.11 | 50.66 69.46 16.33

Natural speech
waveform

mainichi byouinn made kayotta hahano aino fukasa tsuyosa dearu

Natural

Synthesized MCC

Synthesized LFO and MCC

Analysis-synthesized

P
1000
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Figure 4: Example of EEG wavelet comparison of the same sen-
tence on left parietal electrode according to [10] from one sub-
Ject for each speech quality. The marked regions show the dif-
ference in brain activity around 10Hz during the first 1500ms
after the stimuli starts.

By a one-tailed binomial test, we compared the chance rate
(around 50%) and the model that achieved highest average ac-
curacy for each comparison as shown in bold values in 1. From
the result, we confirmed a statistical significance compared to
the chance rate on all four comparisons (p < 0.01).

4.2. Regression

Table 2 compares linear regression and SVM based regression.
From the table, we can see that RMSE of the linear regression
reached as low as 1.353 at theta band. While, SVM has better
RMSE and the results are distributed almost equally among fre-
quency bands. Therefore, from this result, theta band is the best
frequency band in order to do regression of the speech quality.

Table 2: RMSE comparison between linear regression and SVR
between predicted and actual MOS.

Band Linear Regression ~ SVR

Theta 1.353 1.142
Alpha 1.726 1.143
Beta 2.114 1.133
Gamma 4.229 1.139

5. Discussion

This research showed that EEG can be utilized to predict per-
ceived speech quality. Both classification and regression results
showed that EEG is effective for objectively predicting MOS.
This study also found which frequency band is useful in order
to reduce the complexity of models which will shorten the pro-
cessing time. In comparison with [9], our study tried to gener-
alize the approach across the subjects while the previous work
was done within subject. Therefore, our approach may reduce
the prediction performance. In the classification case, some fre-
quencies perform better when used as input of certain compar-
isons. In the regression, we can conclude that SVM performs
better than linear regression, however, the RMSE results were
almost equal among frequency bands. Therefore, by comparing
the results, theta band seems to perform better than any other
frequency bands, followed by the alpha band.

6. Conclusion

In this study we proposed to evaluate speech qualities from EEG
signals. We prepared MOS scores and four types of Japanese
synthesized speeches. We collected EEG data from nine sub-
jects during listening the speech samples, and extracted fre-
quency band features using the Morlet wavelet transform. We
constructed several methods to classify and predict the speech
qualities. The results showed at least 79% accuracy and 1.133
of RMSE. For future work, we consider doing the evaluation
within subject and using more sophisticated algorithms with
higher dimensional data representation such as tensor represen-
tation. [16]
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