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Affective dialogue systems

High potential of dialogue 
systems to address the 
emotional needs of users
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• Increase of dialogue system works 
and applications in various tasks 
involving affect

• Companion for the elderly 
[Miehle et al., 2017]

• Distress clues assessment
[DeVault et al., 2014]

• Affect-sensitive tutoring
[Forbes-Riley and Litman, 2012]



Emotion elicitation

Emotion elicitation: eliciting change of emotion in dialogue

• Using machine translation with target emotion (Hasegawa et al., 2013)

• Using system’s affective personalities (Skowron et al., 2013)

 Have not yet considered the emotional benefit for the user
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Research goal: 

Positive emotion elicitation

We aim to draw on an overlooked 
potential of emotion elicitation to 
improve user emotional states

• A chat-based dialogue system 
with an implicit goal of positive 
emotion elicitation
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Circumplex model of affect [Russell, 1980]



Different responses elicit different emotions
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
I failed the test.

I failed the test.

Oh, again?

Yeah…

I failed the test.

You will do better next time!

Thank you.
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Positive emotion elicitation does NOT mean

always responding with positive emotion
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How was your day?

Terrible. Work did not go well.

That’s too bad.

How was your day?

Terrible. Work did not go well.

I’m glad to hear that!

There are situations where 
“happy responses” can lead 
to negative impact

Expressing negative 
emotion can lead to 
positive impact

• System should learn the 
proper strategy



Neural chat-based dialogue system

• End-to-end modeling of chat dialogue

• RNN encoder-decoder [Vinyals et al., 2015]

• Hierarchical recurrent encoder-decoder 
(HRED) [Serban et al., 2016]

• Generating dialogue response with emotional 
expression [Zhou et al., 2018]
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Not yet an application towards
emotion elicitation

          

          
 

           

           

 

    

    

[Serban et al., 2016]



Proposed approach
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Emotion-sensitive response generation: Emo-HRED

                     
 

                      

    

    

    

Encodes emotional context and 
considers it in generating a response

Train on responses that elicit positive 
emotion
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Training Emo-HRED

Optimization

• Train on combined losses
• Negative Log Likelihood (NLL) of target 

response

• Emotion prediction error

• The emotion encoder targets the 
emotion label of the dialogue turn

• The final cost is used to optimize the 
entire network
• Adam optimizer

Pre-training and selective fine-tuning

• Emotion-annotated data is limited

• Start by pre-training HRED with large-
scale conversational data
• Learning semantic and syntactic 

knowledge

• Selectively fine-tune Emo-HRED with 
the emotion-annotated data
• Only train parts that are affected by 

emotion context

• Avoid over-fitting or destabilizing
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Datasets

Existing data

SubTle Database

• For pre-training

• Large-scale conversational corpus 
from movie subtitles (5.5M triples)

SEMAINE Database

• Small amount of conversation 
between user and listening agent in 
WoZ fashion (2K triples)

Positive-emotion eliciting data

SEMAINE-positive

• For fine-tuning

• Augmenting an existing corpus

• Contains positive-emotion eliciting 
responses
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Evaluation
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Objective evaluation: Perplexity

Model
Parameter 
update

Perplexity 
on SEMAINE-

positive test set

Baseline HRED
standard 121.44

selective 100.94

Proposed Emo-HRED selective 42.26
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Emotion information can be leveraged in response generation
to reduce perplexity

Pre-training: SubTle
Fine-tuning: SEMAINE-positive
Testing: SEMAINE-positive



Subjective evaluation

• Evaluation via crowdsourcing
• 100 test queries, 20 judgments each

• Likert scale 1 to 5 (higher is better)
• Naturalness

• Positive emotional impact
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The proposed model is perceived as 
more natural and significantly elicits a 

more positive emotion (𝑝 < 0.05)



Conclusion
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Conclusion

• We proposed: a dialogue response generator to elicit positive emotion
• Considers emotional context of dialogue

• Trained on constructed corpus that contains responses with positive emotional impact

• Subjective and objective evaluation show improvement over system that ignores 
emotion information
• More natural

• Elicit a more positive emotion impact

• Future work
• Collect and utilize more emotion rich dialogue data

• Richer dialogue context

• Other modalities

• Longer context
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Thank you
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Automatically retrieve responses with positive impact

by utilizing example-based dialogue system approach

• Semantic similarity:
text cosine similarity between 
query and example query

• Emotion correlation: valence 
& arousal Pearson’s score 
between query and example 
query

• Emotional impact: valence 
change in the example triple
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Traditional EBDM Proposed EBDM
Evaluation shows that the 
proposed EBDM is perceived as 
more natural and elicit a more 
positive impact

(Lubis et al., 2017) in Proc. IWSDS 2017


