

Speaker and Emotion Recognition of TV-Series Data Using Multimodal and Multitask Deep Learning

Sashi Novitasari¹, Quoc Truong Do¹, Sakriani Sakti^{1,3}, Dessi Lestari², Satoshi Nakamura^{1,3}

- ¹ Graduate School of Information Science, Nara Institute of Science and Technology
- ² Department of Informatics, Bandung Institute of Technology
- ³ RIKEN AIP
- ¹{sashi.novitasari.si3, do.truong.dj3, ssakti, s-nakamura}@is.naist.jp
- ²{dessipuji}@informatika.org

Outline

- 1. Introduction
- 2. Data
- 3. Model Architectures
- 4. Features
- 5. Experiment
- 6. Conclusion

Speaker and Emotion Recognition of TV-Series Data Using Multimodal and Multitask Deep Learning

I. Introduction

- Real-life communication involves linguistic and paralinguistic aspects
- Multimodal and multitask recognition of non-verbal aspects of speech
- Recognition of speech's speaker and emotion from emotion-rich data
- Previous works:
 - Multimodal or multitask emotion-speaker recognition (not integrated) (Tang et al., 2016; Tian et al., 2016; Vallet et al., 2013)

Speaker and Emotion Recognition of TV-Series Data Using Multimodal and Multitask Deep Learning

II. Data

- TV-series data \rightarrow expressive conversation
 - Video graphic: Facial features
 - Audio : Acoustic features
 - Subtitle : Lexical features
- English
- Utterance-level annotation
 - Speaker : 57 names
 - Emotion valence : 3 classes (negative neutral positive)
 - Emotion arousal : 3 classes (negative neutral positive)

Hello!

III. Model Architectures

- Multilayer perceptron models (5 layers)
- Multimodal classification
- Multitask classification

III. Model Architectures Multimodal Classification

2 evaluated approaches:

a. Features concatenation

b. Features hierarchical fusion

III. Model Architectures Multitask Classification

Perform classification on several tasks at once.

Speaker and Emotion Recognition of TV-Series Data Using Multimodal and Multitask Deep Learning

IV. Features

- 1. Acoustic (main)
 - INTERSPEECH 2010 feature conf.
 - openSMILE toolkit (Eyben et al., 2010)

2. Lexical

- Word-vectors average
- Pre-trained Google Word2Vec (Mikolov et al., 2013)

3. Facial

- Facial contours and angles
- openFace toolkit (Baltrusaitis et al., 2016)

V. Experiment

V. Experiment

- Train set: 2460 utterances
 - Speaker : 57 speaker (imbalanced)
 - Valence : Negative 31%, Neutral 60% , Positive 9%
 - Arousal : Negative 4%, Neutral 75%, Positive 21%
- Evaluated on 300 utterances
 - Speaker : 10 speaker, 30 samples each
 - Valence : Negative 32%, Neutral 57%, Positive 11%
 - Arousal : Negative 1%, Neutral 78%, Positive 21%
- Compared performance of unimodal, multimodal, single-task, and multitask models
- Evaluated based on F1-score(%) on evaluation set

V. Experiment Result

V. Experiment Result: Speaker

F1-scores (%) on evaluation set

- *Multimodal approaches
- U Unimodal
- C Features concatenation
- H Features hierarchical fusion

Feature types

- A Acoustic
- F Facial
- L Lexical

V. Experiment Result: Emotion

F1-score (%) on evaluation set

51 50 49 % 48 -1-Score 47 46 45 44 43 42 U: A C: A+F C: A+F+L H: A+F+L ■ Single-task 44.59 45.78 47.66 47.87 Multitask 49.71 48.66 47.77 46.44

Arousal Classification

*Multimodal approaches

- U Unimodal
- C Features concatenation
- H Features hierarchical fusion
- A Acoustic F - Facial

Feature types

L - Lexical

V. Experiment Result Summary

*Multimodal approaches

- U Unimodal
- C Features concatenation
- H Features hierarchical fusion
- A Acoustic

Feature types

- F Facial
- L Lexical

VI. Conclusion

- We constructed the multimodal and multitask speaker-emotion recognition model by using deep learning and TV-series data
- Multitask model able to outperform single-task model, especially when recognizing emotion by using acoustic features only
- Multimodal-multitask model did not result in a significant improvement (larger data might be needed)

Thank You