
Hisao Katsumi\(^1\), Takuya Hiraoka\(^2\), Koichiro Yoshino\(^{1,3}\), Kazeto Yamamoto\(^2\), Shota Motoura\(^2\), Kunihiko Sadamasa\(^2\) and Satoshi Nakamura\(^1\)

1) NARA Institute of Science and Technology
2) NEC Central Research Laboratories
3) Japan Science and Technology Agency
Arguments are exchanged during argumentation-based dialogue

- e.g.) Argumentation of a judge in a trial

The accused was drunk driving, because alcohol was detected in the accused’s breath.

⇒ Need to collect more supportive information during dialogue

- Rationality of argument using weighted abduction [Ovchinnikova+, 2011]
System collects missing supportive information through information-seeking dialogue

Dialogue conditions
- Limited available time for dialogue
- Large number of candidates to collect

ıt is very difficult to optimize collecting strategy with handcrafted rules
Information-seeking Dialogue for Constructing Rational Arguments

e.g.) System claims “The accused was drunk driving.”

- Alcohol was detected in his breath.

 Support

 Rationality: 0.5

 State: \(s_t \)

 Questioner (System)

 Was the accused driving? Action: \(a_t \)

- Alcohol was detected in his breath.
 - He was driving.

 Support

 Rationality: 1.0

 State: \(s_{t+1} \)

 Questioner (System)

 Answerer’s knowledge

 Yes.

 - He was driving.

 Answerer

Reward: \(r(s_t, a_t, s_{t+1}) \)
Proposed strategy collects supportive information more quickly than rule-based strategy.
We optimized information-seeking dialogue for constructing rational arguments.

We formalized information-seeking dialogue in MDPs and applied RL(Double-DQN) for optimized strategy.

We compared proposed strategy with rule-based strategy, and confirmed our strategy outperforms rule-base one.
EOS