SPEECH CHAIN FOR SEMI-SUPERVISED LEARNING OF JAPANESE-ENGLISH CODE-SWITCHING ASR AND TTS

Sahoko Nakayama¹, Andros Tjandra^{1,2}, Sakriani Sakti^{1,2}, Satoshi Nakamura^{1,2}

1. Background

Code-switching(CS): Bilingual speakers switch languages within a conversation CS challenges: Handle the input in a multilingual setting

Existing approaches:

- ✓ Train either only ASR or only TTS
- ✓ By supervised learning with CS data
 - ⇒It requires large amount of parallel CS data

Problems:

Parallel speech & text CS are generally unavailable

Based on how humans learn CS:

2. Proposed Method

Human conversation:

Human speech chain

auditory feedback mechanism

Speaking

- ✓ Never learn CS at school
- ✓ Learn several monolingual languages, then listen & speak CS in multilingual environments

Speech chain [Andros et al., 2017]

A closed-loop mechanism has a critical

Auditory feedback

Listening`

Zi i ioposca metrica

- ✓ Listening while speaking CS using a speech chain framework
- ✓ Enable to perform semi-supervised learning (No need parallel speech & text CS data)
- ✓ Aim to improve both ASR and TTS at the same time

Code-switching with Speech Chain

Step1. Supervised learning

Separately train ASR & TTS with parallel speech-text monolingual data

Step2. Unsupervised learning

Perform a speech chain with only CS text or CS speech

► Input CS text into TTS⇒ASR ➤ Input CS speech into ASR⇒TTS Calculate the loss $L_{ASR}^{CS}(\widehat{y}^{CS}, y^{CS})$ Calculate the loss $L_{TTS}^{CS}(\widehat{x}^{CS}, x^{CS})$

>Training objective:

$$\mathbf{L} = \boldsymbol{\alpha} * \left(\boldsymbol{L_{ASR}^{Mono}} + \boldsymbol{L_{TTS}^{Mono}} \right) + \boldsymbol{\beta} * \left(\boldsymbol{L_{ASR}^{CS}} + \boldsymbol{L_{TTS}^{CS}} \right)$$

Possible to train the new matters without forgetting the old one

Machine speech chain

A closed-loop architecture which allows ASR and TTS to teach each other

3. Experimental Results

Set-up:

- ✓ Model: Attention-based encoder-decoder ASR, Tacotoron TTS
- ✓ **Data:** En/Ja monolingual BTEC text data En-Ja CS text created from BTEC Speech is synthesized by GoogleTTS

ASR & TTS Performances

(in CER & L2-norm squared in log-Mel spectrogram)

Model	Japanese		CS test(MixTTS)		English	
	test(JaTTS)				test(EnTTS)	
	ASR	TTS	ASR	TTS	ASR	TTS
Baseline: paired speech-text ⇒ Supervised training						
Ja50k(JaTTS)	2.11%	0.321	33.73%	0.484	81.12%	0.667
En50k(EnTTS)	86.42%	0.373	66.16%	0.469	2.30%	0.417
Ja25k + En25k(MixTTS)	1.71%	0.312	18.11%	0.489	2.99%	0.437
Speech chain: [paired Ja25k+En25k (MixTTS)] + [unpaired CS (Mix+JaTTS)]						
⇒ Semi-supervised training						
+CS20k(Ja+MixTTS)	1.82%	0.305	5.08%	0.372	4.05%	0.439
				·		· · · · · · · · · · · · · · · · · · ·

Note: MixTTS means using both JaTTS and EnTTS

4. Conclusion

Proposed CS Model based on speech chain:

- ✓ Allows CS ASR & CS TTS to learn from each other
- ✓ Even without any parallel speech & text CS data

Experimental results reveal:

- ✓ Maintaining performance in the monolingual setting
- ✓ Improved ASR in CS test from CER 18.11% to 5.08%
- ✓ Also improved TTS from L2-norm 0.489 to 0.372

Future Work:

- ✓ Use natural speech data
- ✓ Apply to other languages