Using Functional Load for Optimizing DPGMM based Zero Resource Sub-word Unit Discovery

Bin Wu¹, Sakriani Sakti^{1,2}, Jinsong Zhang³ and Satoshi Nakamura^{1,2} {wu.bin.vq9,ssakti,s-nakamura}@is.naist.jp, jinsong.zhang@blcu.edu.cn

- 1. Nara Institute of Science and Technology, Japan
- 2. RIKEN, Center for Advanced Intelligence Project AIP, Japan
 - 3. Beijing Language and Culture University, China

Background

Research Question

How to find phoneme-like units from zero-resource speech?

Why important

- Problem: zero-resource phoneme-like unit discovery
- Why the problem important?
 - State-of-art DNN needs labels (phonemes,...)
 - manual labelling needs money and effort
 - Knowledge of the labels (phonological system, ...)
- Zero-resource technology helps to create these labels (phonemes, ...)

Previous methods

- Unsupervised sub-word unit discovery of Zerospeech
 - Pre-trained labels + DNN
 - spoken term detection + autoencoder [Badino 2014, Kamper, 2015; Pitt, 2015]
 - spoken term detection + ABNet [Synnaeve 2014, Thiolliere, 2015]
 - Unsupervised clustering
 - Variational autoencoders [Ondel, 2016; Ebber, 2017]
 - Dirichlet Process Gaussian Mixture Model (DPGMM Clustering) [lee, 2012; Chen, 2015]
 - DPGMM + ASR feature transformations [Heck, 2016]
 - DPGMM + ASR alignment [Heck, 2017]
- DPGMM clustering gets top results of the Zerospeech Challenge 2015, 2017

Problem

Human cognitive process of phoneme

Goal: Audio -> Phoneme-like units

How does the human find the phonemes?

Problem1:DPGMM is too sensitive to acoustics

Problems of DPGMM clustering

- Problem1: DPGMM is too sensitive to acoustics
 - High frequency acoustics make lots of small DPGMM clusters
 - Rapid formant changes make lots of small DPGMM clusters

of clusters > # of phonemes of usual languages

Example:

f: high frequency

i: rapid format change

Problem2: DPGMM is weak in contextual modelling

Contextual modelling

Context is important

School /sk1u:l/ Kite /k2ait/

K1 and K2 is acoustically different However,

K1 is **always** following s

K2 is always following some word boundary

K1 and K2 are in completely different context They belong to same phoneme.

Problems of DPGMM clustering

Example:

- pack: /æ1/ after p and: /æ2/ before word boundary
- acoustically different and but complementary distribution
- /\approx 1/ and /\approx 2/ belong to same phoneme /æ/
- Problem2: DPGMM is weak in contextual modelling
 - Acoustically different sub-word units are always treated as different labels by DPGMM.
 - Although they are in completely different context and belongs to same phoneme

Contextual modelling

Context is important

Assume B and 13 are two different phonemes, But they are acoustically similar, Sometimes B is between A and C Sometimes 13 is between 12 and 14

We can distinguish B and 13 by the specific context A, C and 12, 14

Problems of DPGMM clustering

Example:

- Shed: /ʃ/ and fields: /s/
- /ʃ/ and /s/ acoustically similar
- Only /s/ will following /d/ fields can't be ended as /d/ + /ʃ/
- Problem3: DPGMM is weak in contextual modelling
 - Context can help distinguish acoustically similar phonemes

Problems of DPGMM

- Human use context to distinguish phonemes
 - Acoustic different units with completely different context tends to be the same phoneme
 - Context also helps distinguishing acoustic similar phonemes
- Problems of DPGMM
 - weak in context modeling (top-down)
 - sensitive to acoustics (bottom-up)

Proposal

Proposal

- But How to deal with the contextual effects?
 - Statement:
 - If two units can be easily distinguished by the context.
 - It means the contrast of two units are not important in communication
 - (a.k.a Functional Load (FL) is small)
 - Equivalently, the contrast conveys little information in communication
 - Extremely,

```
if two units are in

Completely different context,

It means FL = 0;

It means conveying no info.
```

2018/12/10 17

Computation of functional load

- The measurement of functional load of the contrasts
 - Information loss ignoring the contrast (Hockett, 1955)
 - functional load of a contrast of a label pair x and y

$$FL(x,y) = \frac{H(L) - H(L_{xy})}{H(L)}$$

- eg. In English, K1 and K2 are in completely different context
 - Mathematically, FL(k1, k2) = 0

School /sk1u:l/

Kite /k2ait/

System configuration

- Proposal: greedy mergers based on least functional load criteria
 - Iteratively merge the DPGMM label pairs with lowest functional load and enhance our features by ASR

Figure 1: System to optimize DPGMM based on functional load.

Experiment & Result

Experiment and result

- Xitsonga corpus
 - an excerpt the NCHLT corpus of South African read speech (length: 2 h 29 min)
 - with the official segmentation of Interspeech Zero Resource Speech Challenge 2015

Table 1: ABX error rate from Chen, Heck and this paper (FLm: result after m iterations of functional load merge of DPGMM label pairs)

Existing systems	Number of labels	Within speaker	Across speaker
DPGMM (Chen, 2015)	321	9.6	17.2
DPGMM (Heck, 2016)	192	8.9	14.2
DPGMM + PCA (Heck, 2016)	239	9.8	16.4
Proposed system			
DPGMM + FL0	188	8.4	13.4
DPGMM + FL12	176	8.6	13.2
DPGMM + FL70	118	8.9	14.2
DPGMM + FL120	68	9.6	15.0

Conclusion

- DPGMM is weak in context modeling and sensitive to acoustics
- We enhance the contextual modeling of DPGMM labels by minimum functional criteria
- Result shows we can get posterigram of much lower dimension with similar ABX error

Thank you for listening