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Research Question
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* How to find phoneme-like units from zero-resource speech?
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Why important

* Problem: zero-resource phoneme-like unit discovery

* Why the problem important?

 State-of-art DNN needs labels (phonemes,...)
 manual labelling needs money and effort
* Knowledge of the labels (phonological system, ...)

e Zero-resource technology helps to create these labels (phonemes, ...)




Previous methods

* Unsupervised sub-word unit discovery of Zerospeech

* Pre-trained labels + DNN
* spoken term detection + autoencoder [Badino 2014, Kamper, 2015; Pitt, 2015]
» spoken term detection + ABNet [Synnaeve 2014, Thiolliere, 2015]

* Unsupervised clustering

* Variational autoencoders [Ondel, 2016; Ebber, 2017]

* Dirichlet Process Gaussian Mixture Model (DPGMM Clustering) [lee, 2012; Chen, 2015]
* DPGMM + ASR feature transformations [Heck, 2016]
* DPGMM + ASR alignment [Heck, 2017]

* DPGMM clustering gets top results of the Zerospeech Challenge 2015, 2017
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Human cognitive process of phoneme

e Goal: Audio -> Phoneme-like units

) ohayoosil

* How does the human find the phonemes?

Top-down knowledge interpretation

phone sequence, words, grammar and semantics (Contextual)

Human cognitive process of speech

(o hay o o sil)

*
MM =% 1234 1 1 5 (Acoustical)

Bottom-up acoustic-to-category process DPGMM




Problem1:DPGMM is too
sensitive to acoustics



Problems of DPGMM clustering

* Problem1: DPGMM is too sensitive to acoustics

* High frequency acoustics make lots of small DPGMM clusters Example:
. f: high frequency
* Rapid formant changes make lots of small DPGMM clusters

i: rapid format change
e # of clusters > # of phonemes of usual languages
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Problem?2: DPGMM is weak
iIn contextual modelling



Contextual modelling

* Context is important

School
[skiu:l/

Kite
/k2ait/
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K1 and K2 is acoustically different

However,

K1 is always following s

K2 is always following some word boundary

)

K1 and K2 are in completely different context
They belong to same phoneme.




Problems of DPGMM clustering

* Problem2: DPGMM is weak in contextual modelling

Example:
» pack: /al/ afterp
and: /e2/ before word boundary
e acoustically different and
but complementary distribution
« /[a&l1/and /x2/ belong to same
phoneme /ea/

* Acoustically different sub-word units are always treated as different labels by DPGMM.
. AIthough they are in completely dlfferent context and belongs to same phoneme
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Contextual modelling

* Context is important

Assume B and 13 are two different phonemes,
But they are acoustically similar,
Sometimes B is between A and C

Sometimes 13 is between 12 and 14

I 1 We can distinguish B and 13 by the specific

context A, Cand 12, 14
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Example:
* Shed: /[/ and fields: /s/

Problems of DPGMM clustering  : J, 7™

fields can’t be ended as /d/ + /[/

* Problem3: DPGMM is weak in contextual modelling
e Context can help distinguish acoustically similar phonemes
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Problems of DPGMM

* Human use context to distinguish phonemes

* Acoustic different units with completely different context tends to be
the same phoneme

* Context also helps distinguishing acoustic similar phonemes

* Problems of DPGMM

» weak in context modeling (top-down)
* sensitive to acoustics (bottom-up)
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Proposal

e But How to deal with the contextual effects?

e Statement:

* If two units can be easily distinguished by the context.
* It means the contrast of two units are not in
* (a.k.a (FL) is small)
* Equivalently, the contrast conveys little information in communication
e Extremely,

if two units are in

Completely different context,
It means FL=0;

It means conveying no info.



Computation of functional load

 The measurement of functional load of the contrasts
* Information loss ignoring the contrast (Hockett, 1955)
* functional load of a contrast of a label pair xand y
H(L)-H(L,)
H(L)
* eg. In English, K1 and K2 are in completely different context
* Mathematically, FL(k1,k2) =0

FL(x,y)=

School
[skiu:l/
Kite
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System configuration

* Proposal: greedy mergers based on least functional load criteria

* |teratively merge the DPGMM label pairs with lowest functional load and enhance
our features by ASR
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Figure 1: System to optimize DPGMM based on functional load.
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Experiment and result

* Xitsonga corpus

* an excerpt the NCHLT corpus of South African read speech (length: 2 h 29 min)

* with the official segmentation of Interspeech Zero Resource Speech Challenge 2015

Table 1: ABX error rate from Chen, Heck and this paper
(FLm: result after m iterations of functional load merge of DPGMM label pairs)

Existing systems Number of  Within Across
labels speaker  speaker

DPGMM (Chen, 2015) 321 9.6 17.2
DPGMM Heck, 2016) 192 8.9 14.2
DPGMM + PCA (Heck,2016) 239 9.8 16.4
Proposed system

DPGMM + FLO 188 8.4 13.4
DPGMM + FL12 176 8.6 13.2
DPGMM + FL70 118 8.9 14.2

DPGMM + FL120 68 9.6 15.0



Conclusion

* DPGMM is weak in context modeling and sensitive to acoustics

* We enhance the contextual modeling of DPGMM labels by minimum
functional criteria

* Result shows we can get posterigram of much lower dimension with
similar ABX error




Thank you for listening



