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Abstract

This paper introduces the Seventh Dialog System Technology Challenges (DSTC),
which use shared datasets to explore the problem of building dialog systems. Re-
cently, end-to-end dialog modeling approaches have been applied to various dialog
tasks. The seventh DSTC (DSTC7) focuses on developing technologies related
to end-to-end dialog systems for (1) sentence selection, (2) sentence generation
and (3) audio visual scene aware dialog. This paper summarizes the overall setup
and results of DSTC7, including detailed descriptions of the different tracks and
provided datasets. We also describe overall trends in the submitted systems and
the key results. Each track introduced new datasets and participants achieved
impressive results using state-of-the-art end-to-end technologies.

1 Introduction

The ongoing DSTC series started as an initiative to provide a common testbed for the task of Dialog
State Tracking; the first edition was organized in 2013 (Williams et al. [2013]) and used human-
computer dialogs in the bus timetable domain. Dialog State Tracking Challenges 2 (Henderson et al.
[2014a]) and 3 (Henderson et al. [2014b]) followed in 2014, using more complicated and dynamic
dialog states for restaurant information in several situations: dialog state tracking for unseen states and
different domain data from the training data. Dialog State Tracking Challenge 4 (Kim et al. [2017])
and Dialog State Tracking Challenge 5 (Kim et al. [2016]) moved to tracking human-human dialogs
in mono- and cross-language settings. For the most recent event, DSTC 6 in 2017, the acronym
was changed to mean Dialog System Technology Challenge (Hori et al. [2018b]) and focused on
end-to-end systems with the aim of minimizing effort on human annotation while exploring more
complex tasks.

As we can see, since 2013 the challenge has evolved in several ways. First, from modeling human-
computer interactions, to investigating human-human interactions, and finally moving toward complex
end-to-end systems. DSTC has also offered pilot tasks on Spoken Language Understanding, Speech
Act Prediction, Natural Language Generation and End-to-End System Evaluation, which expanded
interest in the challenge in the research communities of dialog systems and AI. Therefore, given the
remarkable success of the first five editions, the complexity of the dialog phenomenon and the interest
of the research community in the broader variety of dialog related problems, the DSTC rebranded
itself as "Dialog System Technology Challenges" for its sixth edition.

For the seventh event, there were five task proposals. These were discussed at the sixth event, with a
particular focus on how applied proposals were, and how they fit within the larger space of problems
of interest to the research community. Three critical issues were raised in the discussion. First,
the retrieval-based approach for response generation is still essential for practical use, even if the
generative approach often used by neural conversation models has had enormous success (Sentence
Selection Track). Second, working on improving generative approaches is also important, but results
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generated by systems should have more variety according to their contexts, including dialog histories,
locations, and other dialog situations (Sentence Generation Track). The final issue is fusion with
other areas; visual dialog is one direction in which information in images is ued in the dialog (Audio
Visual Scene-Aware Dialog Track). Following the discussion, three tasks were proposed for the
seventh dialog system technology challenge, as described below.

In Sentence Selection (described in more detail in section 2), the challenge consists of several
sub-tasks, in which system are given a partial conversation, and they must select the correct next
utterances from a set of candidates or indicate that none of the proposed utterances is correct. This is
intended to push the utterance classification task towards real-world problems.

In Sentence Generation (described in detail in section 3), the goal is to generate conversational
responses that go beyond chitchat, by injecting informational responses that are grounded in external
knowledge. Since there is no specific or predefined goal, this task does not constitute what is
commonly called task-oriented dialog, but target human-human dialogs where the underlying goal is
often ill-defined or not known in advance.

Finally, in the Audio Visual Scene-aware track (described in detail in section 4), the goal is to
generate system responses in a dialog about an input video. Dialog systems need to understand
scenes to have conversations with users about the objects and events around them. In this track
multiple research technologies are integrated, including: end-to-end dialog technologies, which
generate system responses using models trained from dialog data; visual question answering (VQA)
technologies, which answer to questions about images using learned image features; and video
description technologies, in which videos are described/narrated using multimodal information.

2 Sentence Selection Track

This task2 pushed the state-of-the-art in goal-oriented dialog systems in four directions deemed
necessary for practical automated agents, using two new datasets. We sidestepped the challenge of
evaluating generated utterances by formulating the problem as response selection, as proposed by
Lowe et al. [2015]. At test time, participants were provided with partial conversations, each paired
with a set of utterances that could be the next utterance in the conversation. Systems needed to rank
these options, with the goal of placing the true utterance first. Unlike prior work, we considered
several advanced variations of the task:

Subtask 1 100 candidates, including 1 correct option.

Subtask 2 120,000 candidates, including 1 correct option (Ubuntu data only).

Subtask 3 100 candidates, including 1-5 correct options that are paraphrases (Advising data only).

Subtask 4 100 candidates, including 0-1 correct options.

Subtask 5 The same as subtask 1, but with access to external information.

These subtasks push the capabilities of systems and enable interesting comparisons of strengths and
weaknesses of different approaches. Participants were able to use the provided knowledge sources
as is, or automatically transform them to other representations (e.g. knowledge graphs, continuous
embeddings, etc.) that would improve their dialog systems.

Comparing to the DSTC6 Sentence Selection track, this year’s track differed in several ways. Most
importantly, we use human-human dialogs, rather than a synthetically created dataset. Each of our
subtasks also adds a novel dimension compared to the DSTC6 task, which provided candidate sets of
size 10 with a single correct option, and no external resource.

2.1 Data

Our datasets are derived from collections of two-party conversations. The conversations are randomly
split part way through to create a partial conversation and the true follow-up response. Incorrect
candidate utterances are selected by randomly sampling utterances from the dataset. For the data
with paraphrases, the incorrect candidates are sampled with paraphrases as well. For the data where

2https://ibm.github.io/dstc7-noesis/public/index.html
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Questioner: how do I turn on optical output under gutsy?. (soundcard)
Helper: probably check the settings in the mixer
Questioner: I’ve tried that, speakers still say no incoming signal.
Helper: there should be some check box for analog/digital output,

but unfortunately I wouldn’t know much more

Student: Hello!
Advisor: Hello.
Student: I’m looking for good courses to take.
Advisor: Are you looking for courses in a specific area of CS?
Student: Not in particular.
Advisor: Are you looking to take a very difficult class?

Figure 1: Examples of partial dialogs in task one (Ubuntu top, Advising bottom).

sometimes the pool does not contain the correct utterance, twenty percent of cases are selected at
random to have no correct utterance.

This task considers datasets in two domains. First, a collection of two-party conversations from the
Ubuntu support channel, in which one user asks a question and another helps them resolve their
problem. These are extracted using the model described by Kummerfeld et al. [2018], instead of the
heuristic approach used in Lowe et al. [2015]. This approach produced 135,000 conversations, which
we sample 100,000 of for training and 1,000 for testing. For this setting, manual pages are provided
as a form of knowledge grounding.

Second, a new collection of conversations in a student advising domain, where the goal is to help a
student select courses for the coming semester. These were collected at the University of Michigan
with students playing both roles with simulated personas, including information about preferences
for workloads, class sizes, topic areas, time of day, etc. Both participants had access to the list of
courses the student had taken previously, and the adviser had access to a list of suggested courses that
the student had completed the prerequisites for. In the shared task, we provide all of this information
- student preferences, and course information - to participants. 815 conversations were collected,
with on average 18 messages per conversation and 9 tokens per message. This data was expanded
by collecting 82,094 paraphrases of messages. Of this data, 700 conversations were used in the
shared task, with 500 for training, 100 for development, and 100 for testing. The remaining 115
conversations were used as a source of negative candidates in the sets systems choose from. For the
test data, 500 conversations were constructed by cutting the conversations off at 5 points and using
paraphrases to make 5 distinct conversations. The training data was provided in two forms. First, the
500 training conversations with a list of paraphrases for each utterance, which participants could use
in any way. Second, 100,000 partial conversations generated by randomly selecting paraphrases.

Finally, as part of the challenge, we provided a baseline system that implemented the Dual-Encoder
model from Lowe et al. [2015]. This lowered the barrier to entry, encouraging broader participation
in the task.

2.2 Results

We considered a range of metrics when comparing models. Following Lowe et al. [2015], we use
Recall@N, where we count how often the correct answer is within the top N specified by a system.
In prior work the set of candidates was 10 and N was set at 1, 2, and 5. Since our sets are larger, we
consider 1, 10, and 50. We also consider a widely used metric from the ranking literature: Mean
Reciprocal Rank (MRR). Finally, for subtask 3 we use Mean Average Precision (MAP) since there
are multiple correct utterances in the set. To determine a single winner for each subtask, we used the
mean of Recall@10 and MRR.

Twenty teams participated in at least one of the subtasks, seventeen participated in two or more, and
three participated in every subtask. For both datasets the subtask with the most entries was the first,
which is closest to prior tasks. One team had a clear lead, scoring the highest across all but one of the
subtasks (task 2 on Ubuntu, when the number of candidates is increased). The Advising data was
consistently harder than the Ubuntu data, probably because of the limited training data. However, the
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size of the Ubuntu dataset also posed a challenge in training, as substantial computation was required
for even a single training epoch.

The best system had a Recall@1 of 0.645 on the first subtask for Ubuntu, and was based on the
Enhanced Sequential Inference Model (ESIM) architecture proposed by Chen et al. [2016]. Their
score on the second subtask was 0.067, which is a factor of ten lower, but with more than thousand
times as many options to choose from. The introduction of cases with no correct answer (subtask
four) led to slightly lower results (0.511), while the availability of external data (subtask 5) helped
slightly (0.653). We see a similar trend on the Advising data, except that external data was less useful.

2.3 Summary

This track introduced two new dialog datasets to the research community and a range of variations
on the sentence selection task. The best submitted system managed to achieve Recall@1 score of
0.645 on Ubuntu, an impressive result given the large number of candidates and the complexity of the
dialog. One outstanding challenge is how to effectively use external information – none of the teams
managed to substantially improve performance from subtask 1 to subtask 5.

3 Sentence Generation Track

Recent work [Ritter et al., 2011, Sordoni et al., 2015, Shang et al., 2015, Vinyals and Le, 2015, Serban
et al., 2016, etc.] has shown that conversational models can be trained in a completely end-to-end and
data-driven fashion, without any hand-coding. However, prior work has mostly focused to chitchat,
as that is a common feature of messages in the social media data (e.g., Twitter [Ritter et al., 2011])
used to train these systems. To effectively move beyond chitchat and produce system responses
that are both substantive and “useful”, fully data-driven models need grounding in the real world
and access to external knowledge (textual or structured). To do so, the Generation Task of this year
is inspired by the knowledge-grounded conversational framework of Ghazvininejad et al. [2018],
which combines conversational input and textual data from the user’s environment (here, a web page
that is discussed). Such a framework maintains the benefit of fully data-driven conversation while
attempting to get closer to task-oriented scenarios, with the goal of informing and helping the users
and not just entertaining them.

3.1 Task definition

The task follows the data-driven framework established in 2011 by Ritter et al. [2011], which avoids
hand-coding any linguistic, domain, or task-specific information. In the knowledge-grounded setting
of Ghazvininejad et al. [2018], that framework is extended as each system input consists of two parts:
Conversational input: Similar to DSTC6 Track 2 [Hori and Hori, 2017], all preceding turns of the
conversation are available to the system. For practical purposes, we truncate the context to the K
most recent turns.
Contextually-relevant “facts”: The system is given snippets of text that are relevant to the context
of the conversation. These snippets of text are not drawn from any conversational data, and are
instead extracted from external knowledge sources such as Wikipedia or Foursquare.

From this input, the task it to produce a response that is both conversationally appropriate and
informative. The evaluation setup is presented in Section 3.3.

3.2 Data

We extracted conversation threads from Reddit data, which is particularly well suited for grounded
conversation modeling. Indeed, Reddit conversations are organized around submissions, where each
conversation is typically initiated with a URL to a web page (grounding) that defines the subject of
the conversation. For this task, we restrict ourselves to submissions that contain exactly one URL and
a title. To reduce spamming and offensive language and improve the overall quality of the data, we
manually whitelisted the domains of these URLs and the Reddit topics (i.e., “subreddits”) in which
they appear. This filtering yielded about 3 million conversational responses and 20 million facts
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divided into train, validation and tests.3 For the test set, we selected conversational turns for which 6
or more responses were available, in order to create a multi-reference test set. Given other filtering
criteria such as turn length, this yielded a 5-reference test set of size 2208 (For each instance, we set
aside one of the 6 human responses to assess human performance on this task). More information
about the data for this task can be found on the data extraction web site, which makes available all of
the data extraction and evaluation code.4

3.3 Evaluation

We evaluate response quality using both automatic and human evaluation. Since we are not consider-
ing task-oriented dialog, there is no pre-specified task and therefore no extrinsic way of measuring
task success. Instead, we performed a per-response human evaluation judging each system response
using crowdsourcing:
Relevance: This evaluation criterion asks whether the system response is conversationally appro-
priate and relevant given the K immediately preceding turns (we set K = 2 to reduce the judges’
cognitive load). Note that this judgment has nothing to do with grounding in external sources, and is
similar to human judgments for prior data-driven conversation models (e.g., [Sordoni et al., 2015]).
Interest: This evaluation criterion measures the degree to which the produced response is interesting
and informative in the context of a document provided by the URL. Since it would be impractical
to show entire web pages to the crowdworkers, we restricted ourselves at training and test time to
URLs with named anchors (i.e., prefixed with ‘#’ in the URL), and the crowdworkers only had to
read a snippet of the document immediately following that anchor. Note that models could use full
web pages as input, and the decision to only show a snippet for each response was again to reduce
cognitive load.

We scored both evaluation criteria on a 5-point Likert scale, and finally combined the two judgments
by weighting them equally. In order to provide participants with preliminary results to include in
their system descriptions, we also performed automatic evaluation using standard machine translation
metrics, including BLEU [Papineni et al., 2002], METEOR [Lavie and Agarwal, 2007], and NIST
[Doddington, 2002]. NIST is a variant of BLEU that weights n-gram matches by their information
gain, i.e., it indirectly penalizes uninformative n-grams such as “I don’t” and “don’t know”. The final
ranking of the systems was based only on human evaluation scores.

3.4 Results

The Generation Task received 26 system submissions from 7 teams. In addition to these systems,
we also evaluated a “human” system (one of the six human references set aside for evaluation) and
three baselines: a seq2seq baseline, a random baseline (which randomly selected responses from the
training data), and a constant baseline (which always responds “I don’t know what you mean.”). The
reason for including a constant baseline is that such a deflective response generation system can be
surprisingly competitive, at least when evaluated on automatic metrics (BLEU).

The findings are as follows for each of the metrics:
BLEU-4: When evaluated on 5 references, the constant baseline, which always responds deflectively,
does surprisingly well (BLEU=2.87%) and outperforms all the submitted systems (BLEU4 ranging
from 1.01% to 1.83%), and is only outperformed by humans. In further analysis, we found that
reducing the number of references to one solved the problem, as almost all the systems were able to
outperform the baseline according to single-reference BLEU. We suspect this deficiency of multi-
reference BLEU, previously noted in Vedantam et al. [2015], to be due to its parameterization as a
precision metric. For example, if one of the gold responses happens to be “I don’t know what you
mean”, the constant baseline gets a maximum score for that instance, even if the other references are
semantically completely unrelated. Thus, this biases the metric towards bland responses, as often at
least one of the 5 references is somewhat deflective (e.g., contains “I don’t know”). Based on these
observations, we chose to use single-reference BLEU instead of multi-reference BLEU for this DSTC
task, as the former gave much more meaningful results.
NIST-4: The NIST score weights ngram matches by their information gain, and effectively penalizes

3We could have easily increased the number of web domains to create a bigger dataset, but we aimed to make
the task relatively accessible for participants with limited computing resources.

4https://github.com/DSTC-MSR-NLP/DSTC7-End-to-End-Conversation-Modeling
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common n-grams such as “I don’t know”, which alleviates the problem with multi-reference BLEU
mentioned above. None of the baselines is competitive with the top systems according to NIST-4,
even when using 5 references. This suggests that NIST might be a more suitable metric than BLEU
when dealing with multi-reference test sets, and it penalizes bland responses.
METEOR: This metric suffers from the same problem as BLEU-4, as the constant baseline performs
very well on that metric and outperforms all submitted primary systems but one. We suspect this is
due to the fact that METEOR (as BLEU) does not consider information gain in its scoring.
Human Evaluation: Owing to the cost of crowdsourcing, we limited evaluation to a sample of 1000
conversations and used primary systems only. All systems were assigned the same conversations.
Each output was rated by 3 randomly-assigned judges provided by a crowdsourcing service. Judges
were asked to rate outputs in context for Relevance and Interest using a 5-point Likert scale. Not
unexpectedly, the constant baseline performed moderately well on Relevance (2.60), but poorly
on Interest judgments, where it was statistically indistinguishable from the (low) random baseline
(random: 2.35, constant: 2.32). The best system returned a composite score of 2.93 (Relevance: 2.99,
Interest: 2.87). This remains well below the human baseline of 3.55 (Relevance: 3.61, Interest: 3.49).
After replacing spammers, interrater agreement on a converted 3-way scale was fair, with Fleiss’
Kappa at 0.39 for Relevance and 0.38 for Interest.

3.5 Summary

The sentence generation task challenged participants to produce interesting and informative end-
to-end conversational responses that drew on textual background knowledge. In this respect, the
task was significantly more challenging that the DSTC6 task that was focused on the conversational
dimensions of response generation. In general, competing system outputs were judged by humans to
be more relevant and interesting than our constant and random baselines. It is also clear, however,
that the quality gap between human and system responses is substantial, indicating that there is
considerable space for research in future algorithmic improvements.

4 Audio Visual Scene-aware dialog Track

In this track, we consider a new research target: a dialog system that can discuss dynamic scenes with
humans. This lies at the intersection of research in natural language processing, computer vision, and
audio processing. As described above, end-to-end dialog modeling using paired input and output
sentences has been proposed as a way to reduce the cost of data preparation and system development.
Such end-to-end approaches have been shown to better handle flexible conversations by enabling
model training on large conversational datasets Vinyals and Le [2015], Hori et al. [2018b]. However,
current dialog systems cannot understand a scene and have a conversation about what is going on in it.
To develop systems that can carry on a conversation about objects and events taking place around the
machines or the users, the systems need to understand not only a dialog history but also the video and
audio information in the scene. In the field of computer vision, interaction with humans about visual
information has been explored in visual question answering (VQA) by Antol et al. [2015] and visual
dialog by Das et al. [2017]. These tasks have been the focus of intense research, aiming to (1) generate
answers to questions about things and events in a single static image and (2) hold a meaningful dialog
with humans about an image using natural, conversational language in an end-to-end framework.
To capture the semantics of dynamic scenes, recent research has focused on video description. The
state-of-the-art in video description uses multimodal fusion to combine different input modalities
(feature types), such spatiotemporal motion features and audio features proposed by Hori et al.
[2017]. Since the recent revolution of neural network models allows us to combine different modules
into a single end-to-end differentiable network, this framework allow us to build scene aware dialog
systems by combining end-to-end dialog and multimodal video description approaches. We can
simultaneously use video features and user utterances as input to an encoder-decoder-based system
whose outputs are natural-language responses.

4.1 Task definition

In this track, the system must generate responses to a user input in the context of a given dialog. The
dialog context consists of a dialog history between the user and the system in addition to the video
and audio information in the scene. There are two tasks, each with two versions (a and b):
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Task 1: Video and Text (a) Using the video and text training data provided but no external data
sources, other than publicly available pre-trained feature extraction models (b) Also using
external data for training.

Task 2: Text Only (a) Do not use the input videos for training or testing. Use only the text training
data (dialogs and video descriptions) provided. (b) Any publicly available text data may be
used for training.

4.2 Data

To set up the Audio Visual Scene-Aware Dialog (AVSD) track, we collected text-based dialogs about
short videos of Charades by Sigurdsson et al. [2016]5, a dataset of untrimmed and multi-action
videos, along with video descriptions in Alamri et al. [2018]. The data collection paradigm for
dialogs was similar to the one described in Das et al. [2016], in which for each image, two parties
interacted via a text interface to yield a dialog. In Das et al. [2016], each dialog consisted of a
sequence of questions and answers about an image. In the video scene-aware dialog case, two parties
had a discussion about events in a video. One of the two parties played the role of an answerer who
had already watched the video. The answerer answered questions asked by their counterpart – the
questioner. The questioner was not allowed to watch the whole video but were able to see the first,
middle and last frames of the video as single static images. The two had 10 rounds of QA, in which
the questioner asked about the events that happened between the frames. At the end, the questioner
summarized the events in the video as a description.

The DSTC7 AVSD official dataset contains 7,659, 1,787 and 1,710 dialogs for training, validation
and testing, respectively. The questions and answers of the AVSD dataset mainly consists of 5 to 8
words, making them longer and more descriptive than VQA. The dialog contains questions asking
about objects, actions and audio information in the videos. Although we tried to collect questions
directly relevant to the event displayed, some questions ask about abstract information in the video
such as how to begin the videos and the duration of the videos. Table 1 shows an example dialog
from the data set.

Table 1: An example dialog from the AVSD dataset.

Questioner Answerer
QA1 What kind of room does this appear to be? He appears to be in the bedroom.
QA2 How does the video begin? By him entering the room.
QA3 Does he have anything in his hands? He pick up a towel and folds it.
QA4 What does he do with it ? He just folds them and leaves them on the chair.
QA5 What does he do next? Nothing much except this activity.
QA6 Does he speak in the video? No he did not speak at all.
QA7 Is there anyone else in room at all? No he appears alone there.
QA8 Can you see or hear any pets in the video? No pets to see in this clip.
QA9 Is there any noise in the video of importance? Not any noise important there.

QA10 Are there any other actions in the video? Nothing else important to know.

4.3 Evaluation

In this challenge, the quality of a system’s automatically generated sentences is evaluated using
objective measures. These determine how similar the generated responses are to ground truths
from humans and how natural and informative the responses are. To collect more possible answers
in response to the questions for the test videos, we asked 5 humans to watch a video and read a
dialog between a questioner and an answer about the video, and then to generate an answer in
response to the question. We evaluated the automatically generated answers by comparing with the
6 ground truth sentences (one original answer and 5 subsequently collected answers). We used the
MSCOCO evaluation tool for objective evaluation of system outputs 6. The supported metrics include
word-overlap-based metrics such as BLEU, METEOR, ROUGE_L, and CIDEr.

We also collected human ratings for each system response using a 5 point Likert Scale, where humans
rated system responses given a dialog context as: 5 for Very good, 4 for Good, 3 for Acceptable, 2 for

5http://allenai.org/plato/charades/
6https://github.com/tylin/coco-caption
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Poor, and 1 for Very poor. Since we the dataset contains questions and answers, we asked humans to
consider correctness of the answers and also naturalness, informativeness, and appropriateness of the
response according to the given context.

4.4 Results

The AVSD Task received 31 system submission from 9 teams. We built a baseline end-to-end dialog
system that can generate answers in response to user questions about events in a video sequence as
described in Hori et al. [2018a]. Our architecture is similar to the Hierarchical Recurrent Encoder
in Das et al. [2016]. The question, visual features, and the dialog history are fed into corresponding
LSTM-based encoders to build up a context embedding, and then the outputs of the encoders are fed
into an LSTM-based decoder to generate an answer. The history consists of encodings of QA pairs.
We feed multimodal attention-based video features into the LSTM encoder instead of single static
image features. The systems submitted deployed LSTM, BLSTM, and GRU with cross entropy as the
objective function. The best system applied "Hierarchical and Co-Attention mechanisms to combine
text and vision" from Libovickỳ and Helcl [2017], Lu et al. [2016]. Table 2 shows the evaluation
results for the baseline and best systems. Under this evaluation, the human rating for the original
answers was 3.938.

Table 2: Performance comparison between the baseline and the best system.

System BLEU-4 METEOR CIDEr Human rating
Baseline 0.309 0.215 0.746 2.848

Best 0.394 0.267 1.094 3.491

4.5 Summary

We introduced a new challenge task and dataset for Audio Visual Scene-Aware Dialog (AVSD) in
DSTC7. This is the first attempt to combine end-to-end conversation and end-to-end multimodal
video description models into a single end-to-end differentiable network to build scene-aware dialog
systems. The best system applied hierarchical attention mechanisms to combine text and visual
information, improving by 22% over the human rating for the baseline system. The language models
trained from QA are still strong approaches and the power to predict the objects and events in the
video is not sufficient to answer the questions correctly. Future work includes more detailed analysis
of the correlation between the QA text and the video scenes.

5 Conclusion and Future Directions

In this paper, we summarized tasks conducted on the seventh dialog system technology challenge
(DSTC7): sentence selection, sentence generation, and audio visual scene-aware dialog. The sentence
selection track contained several variations on the response selection problem, with five sub-tasks and
two new datasets. The sentence generation track provided a test of knowledge-grounded response
production, with the aim of creating more controllable generators. The audio visual scene-aware
track raised a new problem in which dialog is generated about a given video in a variety of sub-tasks.

All of the data described in this paper will be provided as a large-scale benchmark of dialog systems
from several viewpoints, after the challenge, to support future dialog system research. However, there
are several major remaining challenges for dialog systems. For example, transferring models trained
on large-scale data-sets to a variety of domains that do not have enough data is a known issue for
dialog systems, as mentioned in DSTC3. Data created this challenge, which focused on end-to-end
learning, does not address this issue, which would require expanding to a larger variety of domains.
We expect to continue the challenge in the future, providing new testbeds that work towards the
remaining open problems of dialog system research.
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