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• An act that intentionally causes another persons to hold a 

false belief

× Ignorance, mistaking, false recognition

• It is hard for humans to predict deceptions (Chance-level)

– Characteristic features of deception/truth are too small to be 

captured by humans

• Humans have biases

– Truth-bias: people tend to judge

speech as valid regardless whether

it is true or not
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Deceptions in dialogues



• It is expected that machines can capture small difference 

between deceptive and truthful behaviors

– E.g., supervised learning

• It is also expected to predict deceptions from natural spoken 

conversations

– Without using special equipment

such as polygraph

– Deception detection from natural

speech is also useful for dialogue

tactics (non-cooperative case)
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Deception detection by machines

Deception detection based on polygraph

From：http://www.pref.tottori.lg.jp/98373.htm
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Deception detection from spoken language

uh…, I didn’t eat that cookie.

Using acoustic features and 
their emotion labels on SVM

0.6％ improvements from 
chance-level 

[Amiriparian, 2016]

Using acoustic, lexical and features 
depending on individuality by rules
6% improvements from chance-level

[Hirschberg, 2005]

Building Large-scale corpora 
Acoustic and lexical (embedding) features for 

Bidirectional LSTM
F-1: 0.64 (Precision:0.67, Recall:0.61)

[Levitan, 2015], [Mendels, 2017]



• Building multimodal deception detection

– Hypothesis: multimodal (acoustic and linguistic) has different 

contributions to deception detection

– Experiments: Combine features with multi-layer perceptron (MLP) 

classifier and compare with single-modal features  

• Comparison between deception detections by humans and by 

statistical models

– Hypothesis: It is hard for humans to capture deceptions

– Experiments: giving the same training & test to both human 

participants and the model; then comparing these results
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Research purpose



• Emotion and deception has an strong relation

– 384 dimensional acoustic features used for emotion recognition 

(INTERSPEECH2009 competition) were extracted by OpenSMILE

toolkit

– The feature is raw-level but expected to contribute for deception 

detection [Mendels 2017]
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Acoustic features

Speech

Features

ZCR mean

RMS Energy standard deviation

F0 kurtosis, skewness

HNR extremes:  value, rel, position, range

MFCC 1-12 linear regression: offset, slope, MSE

OpenSMILE



• Features extracted from fastText [Joulin 2016]

– Distributed representation of sentence

– The representation is optimized not only to embed similar words 

into close points but also improving the labeling accuracy

2018/11/14 ©Koichiro Yoshino 

AHC-Lab. NAIST, PRESTO JST
APSIPA 2018 7

Linguistic features

fastText
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• Linear interpolation of MLP based on acoustic features and 

linguistic features (fastText)
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Model (MLP)
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Linguistic
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Label1: Truth

Label2: Deception

w1 = 0.6, w2 = 0.4
(Decided by validation set)



• Dialogue corpus including deception

– Naïve English speakers (American, 16 males and 16 females)

– 7 hours speech and their transcriptions 

– Truth/deception labels are annotated by the speakers themselves, 

pushing the button during the conversation
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Corpus (CSC deceptive speech)

Transcription examples label

well, yeah, there's a chance. T

uh actually, I did well. excellent. D



• Experiment 1:

– Deception detection based on acoustic (single), linguistic (single)

and acoustic+linguistic (multimodal) features

• Experiment 2:

– Deception detection by humans (6 participants)

• Non-native (average TOEIC score was 861.7)

• Participants are given speeches and transcriptions to decide their 

labels (3 conditions: acoustic, linguistic and multimodal)

• Participants freely confirmed utterances and their labels in the 

training data before the experiment

– Compared with machine results

2018/11/14 ©Koichiro Yoshino 

AHC-Lab. NAIST, PRESTO JST
APSIPA 2018 10

Experimental setup



• Texts, speeches or texts+speeches of human utterance are 

given to participants 

– Randomly chosen from text

– Order of experiments are randomly selected

• No dialogue contexts are given

– Human participants just judged labels by using texts and speeches 

of utterances themselves
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Given tasks to human participants

uh actually, I did well.uh actually, I did well. Classification Deception



• Randomly selected utterances that has more than 5 words

– It is very hard to label shorter sentences

• Samples are selected to adjust the ratio of truth/deception

as 1:1

– Chance rate of our setting is 50%

– Human participants don’t know the ratio
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Number of dataset

#Truth sentences #Deceptive sentences

Test 50 50

Train 1800 1800

Validation 200 200



Accuracy Precision (D) Recall (D) F-1 (D)

Acoustic 0.580 0.577 0.600 0.588

Linguistic 0.620 0.630 0.580 0.604

Acoustic+Linguistic 0.640 0.667 0.560 0.609
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Results of proposed classifiers

Results of MLP classifiers

• The method using multimodal feature achieved the state of 

the art accuracy & F-1 score for deception labels 

– Combining acoustic and linguistic features has an advantage than 

using single-modal features



• It was hard for human participants to predict deceptions

– Significantly smaller than any machine learning based methods (p<.05)

– Precision was chance level but recall was smaller

• It indicates the truth-bias of humans

(humans tend to judge that the utterance is true)
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Results of human participants

Accuracy Precision (D) Recall (D) F-1 (D)

Acoustic 0.515 0.524 0.370 0.414

Linguistic 0.510 0.515 0.387 0.425

Acoustic+Linguistic 0.512 0.498 0.360 0.405

Machine (best) 0.640 0.667 0.560 0.609

Results of human participants



• Summary

– Multimodal features contributes to improve the deception detection 

accuracy

• Note that sentence that have more than 5 words are used, that is 

why the linguistic feature has larger contributions

– Deception detection ability of human is approximately chance-level

– Human tend to predict an utterance to be true regardless of an 

actual label

• Future works

– Experiments with Native speakers

– Using dialogue histories for the prediction
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Summary and future works


