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Use word posterior distributions as NMT inputs in SLT by ASR-NMT pipeline

o Handle ASR ambiguity using word posterior distributions

o Train with both 1-hot (text) and distributional (ASR) inputs

o Improvements over a simple cascade with ASR 1-bests
• 4-5 pts. BLEU gains on BTEC (synthesized) and ATR-English (natural)
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ASR error propagation (well-known!)
o Lattice-based integration [Su+ 2017, 

Sperber+ 2017 (also many such studies by SMT)]

• Complex implementation/computation

o Direct network integration
[Berard+ 2016, Kano+ 2017]

• Works poorly in English-Japanese

Problem & previous approaches

Integration based on word posterior

1. Obtaining word posterior distributions 
from the softmax layer of an ASR decoder

2. Using the posterior distributions as 
inputs to an NMT decoder (i.e. using 
weighted word embeddings)

Proposed method Consistent improvements over 1-best
o Outperformed text-NMT with low-WER!? 

o ASR error recovery by word posterior
• R: Excuse me where is the closest shoe store
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o Resolving word confusion by ASR-aware 
embeddings even without ASR errors
• R: I’d like to have a perm and a haircut please
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Experimental results

o Simple integration by small modifications 
to existing ASR & NMT implementations

o Straightforward combination of text- and 
ASR-based NMT training
• Pre-training with 1-hot text inputs
• Fine-tuning with ASR posteriors

Advantages

We could achieve simple but effective ASR-
NMT integration by word posteriors
Future work: Joint training of ASR+NMT

Conclusions
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