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. Quick summary

Use word posterior distributions as NMT inputs in SLT by ASR-NMT pipeline
o Handle ASR ambiqguity using word posterior distributions
o Train with both 1-hot (text) and distributional (ASR) inputs

o Improvements over a simple cascade with ASR 1-bests
\ » 4-5 pts. BLEU gains on BTEC (synthesized) and ATR-English (natural)
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. Problem & previous approaches N

ASR error propagation (well-known!)

o Lattice-based integration [Su+ 2017,
Sperber+ 2017 (also many such studies by SMT)]

» Complex implementation/computation

o Direct network integration
[Berard+ 2016, Kano+ 2017]

/ Advantages

o Simple integration by small modifications

_* Fine-tuning with ASR posteriors

\_° Works poorly in English-Japanese )

Proposed method
Integration based on word posterior

1. Obtaining word posterior distributions
from the softmax layer of an ASR decoder
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2. Using the posterior distributions as
Inputs to an NMT decoder (l.e. using
welghted word embeddings)

7 Experimental results

to existing ASR & NMT implementations

o Straightforward combination of text- and
ASR-based NMT training

* Pre-training with 1-hot text inputs

Consistent improvements over 1-best
o Outperformed text-NMT with low-WER!?

BLEU for synthesized speech (BTEC)

M Baseline (1-best)

42.81 43.93
37.06 38.5

44.34 M Baseline Proposed
WER=15.17% WER=12.34% Reference

o ASR error recovery by word posterior

* R: Excuse me where Is the closest shoe store
station (0.439)

station shoe (0.321)
T A—FHIEWERIZE Z T H
FA—FEVWHIEIZE ZTTH

shoe store

BLEU for natural speech
(ATR-English)

Proposed (posterior)
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o Resolving word confusion by ASR-aware

embeddings even without ASR errors

» R:I'd like to have a perm and a haircut please
perm perm

\_

NMT attention HR
T T T Weighted T
+— word vectors T
embed | | embed || embed
<S>
0 0.5 : .
. 0.3 02| Posterior
0.2 : 04 vectors
0.8 0.1 :

¢ Bi/WN—TE/N—Z2BEWNLET
e P:N=ZCHhy FEEBERBEWL XTI

perm haircut

~

/
~

/

— Conclusions
We could achieve simple but effective ASR-

NMT integration by word posteriors
Future work: Joint training of ASR+NMT
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