
TRANS-AM: Discovery Method
of Optimal Input Vectors Corresponding

to Objective Variables

Hiroaki Tanaka1(B), Yu Suzuki1,2(B), Koichiro Yoshino1,3(B),
and Satoshi Nakamura1,2(B)

1 Graduate School of Information Science, Nara Institute of Science and Technology,
Ikoma, Japan

{tanaka.hiroaki.sy2,ysuzuki,koichiro,s-nakamura}@is.naist.jp
2 Data Science Centre, Nara Institute of Science and Technology, Ikoma, Japan

3 PRESTO: Fundamental Information Technologies toward Innovative Social System
Design. Japan Science and Technology Agency, Kyoto, Japan

Abstract. In various fields, ensemble models by supervised learning are
effective, but the models cannot tell us how to modify the input vector so
that we will increase the objective variable more than a given threshold
or decrease it less than the threshold. In this paper, we propose a method,
TRANS-AM, that can discover an input vector satisfying the condition
of changing of the objective variable in regression problems by using a
property of regression tree. The regression tree splits input space into
subspaces. There are subspaces with corresponding objective variables
satisfying such a condition. By transforming the input vector to new
input vectors belonging to one of the subspaces, we can discover a new
input vector whose distance from the original input vector is minimum
by satisfying the condition to change the objective variable. The reason
for “minimum” is the cost—if the new input vector is far from the origi-
nal one, we need the significant cost to modify the original input vector
to the new one. We evaluated the proposed method through numerical
simulations and investigated that the proposed method works well; the
ratio of the number of discovered input vectors satisfying the condition
per the number of discovered input vectors is 60% for the datasets gen-
erated through logistic function.

1 Introduction

As most of the researches in data mining and machine learning has focused on the
accuracy, efficiency, and robustness of different techniques, little effort has been
made for “actionable knowledge extraction” from advanced machine learning
models. Here, “actionable knowledge extraction” means finding how to change
input vectors to improve the objective variables in supervised learning: improving
the objective variable in regression tasks. However, in the real world, we often

H. Tanaka—Presently with Research Laboratory, NTT DOCOMO Inc.

c© Springer Nature Switzerland AG 2018
C. Ordonez and L. Bellatreche (Eds.): DaWaK 2018, LNCS 11031, pp. 216–228, 2018.
https://doi.org/10.1007/978-3-319-98539-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98539-8_17&domain=pdf

TRANS-AM: Discovery Method of Optimal Input Vectors 217

face the difficulty of extracting such knowledge. In other words, we cannot obtain
the knowledge to answer the research question “How do we modify the input
vectors to increase the objective variables greater than a given threshold or
decrease them less than the threshold with minimum effort?”

Let us consider a running example. We are strategists of a soccer team. It is
supposed that the winning percentage is predicted by random forest regression
whose objective variables are abilities of each position: speed, acceleration, dash
speed, and so on. If we can acquire the desirable input variables corresponding
to winning percentage which is upper than a given threshold—for example, we
want to keep the winning percentage upper than 80%, the threshold is 80; we
can plan the training so that the abilities of players will satisfy the desirable
input variables. In addition, if the desirable input variables corresponding to the
winning percentage which is upper than the threshold is far from the original
input variables, we cannot develop the good plan—it is difficult to improve the
players’ abilities exponentially. Therefore, the requirement is rewritten as “We
want to know the desirable abilities of each player and the abilities are nearest
to original abilities of players.”

In this paper, we propose a method named, the Transforming-feAture Method
(TRANS-AM) to answer the research question in a regression task. This method
enables us to modify the input vector adequately to increase or decrease the
objective variables by adding a small positive number ε to each input variable
in the original input variables. With the property of a regression tree—it is
supposed that the objective variable is predicted by random forest regression
[1]—, splitting the input space into subspaces, allows us to determine the input
vector whose objective variable improved. By transforming the input vector to
new input vectors belonging to one of the subspaces, we discover a new input
vector whose distance from the original input vector is minimum in those new
vectors. The basic idea of the TRANS-AM is based on the method proposed by
Tolomei et al. [2]. Their method is built for classification tasks, and we expanded
the method for regression tasks. We also relax a restriction of a regression tree
which is supposed in the previous study by Tolomei et al. [2]. Considering the
previous running example, the TRANS-AM enables us to plan the ideal training.

The contributions of this paper are as follows.

– We expanded the classification task discussed in Tolomei et al. [2] to the
regression task.

– We relaxed a restriction which is assumed in Tolomei et al. [2]: once we use
the input variable xi for a branch of tree we cannot use it for other branches.

The second contributions allows us to use more complex regression trees for the
random forest more than that used in Tolomei et al. [2].

2 Related Work

We first discuss earlier studies on extracting actionable knowledge. Cao et al.
[3] and Robert et al. [4] focused on the development of effective interestingness

218 H. Tanaka et al.

metrics. Liu et al. [5,6] proposed methods for pruning and summarizing the
learnt rules, as well as matching rules by similarity. Cao et al. [7,8] proposed a
data mining method which is a paradigm shift from a research-centred discipline
to a practical tool for actionable knowledge. All the above methods depend on
the domains of datasets, but our proposed method does not.

We now discuss tree-based methods. Du et al. [9], Karim and Rahman [10],
and Yang et al. [11,12] discussed post-proceeding methods specifically tailored
to decision trees. It is true that a decision tree is interpretable; therefore, we
can find a modification approach to improve the objective variable. However, a
decision tree’s prediction precision is not good [13]. Our proposed method, on
the other hand, can use random forest whose prediction precision is better than
that of a decision tree.

Finally, Cui et al. [14] proved that the optimal action extraction (OAE) prob-
lem similar to the problem we solve in Sect. 3 is generally NP-hard by reducing
it to DNF-MAXSAT [15] and formulated the problem in an integer linear pro-
gramming formulation, which has been efficiently solved using current packages
with state-of-the-art solvers such as CPLEX [16]. Tolomei et al. [2] developed
a method of solving the OAE problem with an ε-satisfactory instance, which is
explained in Sect. 3. We call this method as actionable feature tweaking (AFT).
As mentioned in Sect. 1, the AFT requires the restriction: once we use the input
variable xi for a branch, we cannot use it for other branches. By this restric-
tion, the modification of input vectors is simplified. As we relax the restric-
tion, we change the modification approach, i.e. the approach to developing an
ε-satisfactory instance.

3 TRANS-AM: Proposed Method

In this section, we explain the TRANS-AM for feature transformation to increase
objective variables more than a given threshold or decrease them than the
threshold by expanding AFT. Actionable feature tweaking is used to change the
label of an objective variable, i.e. the task addressed in AFT is classification.
We expanded AFT to change the objective variable to regression and liberal-
ize one assumption of AFT regarding the root-to-leaf paths of each regression
tree. We published the source of TRANS-AM on https://github.com/setten-
QB/TRANS-AM.git

3.1 Notation

Let X ⊂ R
d be an input space and suppose that each x ∈ X is associated with an

objective variable y ∈ Y ⊂ R. We assume there is an unknown target function
f : X → Y. Most machine learning methods learn the function f̂ ≈ f from
dataset D = {(xn, yn)}N

n=1. Specifically, f̂ is the estimate that best approximates
f on D, according to a specific loss function �. The � measures the error between
predicted and observed values.

https://github.com/setten-QB/TRANS-AM.git
https://github.com/setten-QB/TRANS-AM.git

TRANS-AM: Discovery Method of Optimal Input Vectors 219

The interpretability of f̂ depends on the hypothesis space in which f̂ was
selected. In this study, we focused on random forest regression. Random forest
regressor T consists of K regression trees T1, · · · , TK . We represent the estimate
of each Tk, k = 1, · · · ,K as ĥk. Then the estimate of T is calculated by the
sample mean of ĥk.

Regression tree Tk splits the input space X into subspaces as

X = Xk,1 ⊕ Xk,2 ⊕ · · · ⊕ Xk,M , (1)

and γk,m corresponds to the area Xk,m. Then the prediction with Tk is calcu-
lated by

ĥk (x) =
M∑

m=1

γk,m1 [x ∈ Xk,m] , 1 [x ∈ Xk,m] =

{
1 x ∈ Xk,m

0 x /∈ Xk,m

. (2)

where 1[x ∈ Xk,m] means the indicator function which is defined as

1 [x ∈ Xk,m] =

{
1 x ∈ Xk,m

0 x /∈ Xk,m

. (3)

3.2 Split Input Space with Regression Tree

Suppose that we are given the trained random forest regressor T and x satisfying
f (x) = f̂ (x) < t0, where t0 is a hyperparameter meaning a lower threshold.
Our aim is to transform x to x ′, which satisfies f (x ′) ≥ t1, where t1 is also a
hyperparameter meaning an upper threshold.

We assume that Assumption 1 holds for any fixed regression tree Tk.

Assumption 1. For any fixed regression tree Tk of the random forest T , 4 holds.

∃Xk,m ⊂ X s.t. ∀x ∈ Xk,m, ĥk (x) = γk,m ≥ t1 (4)

By this assumption, we can select the subspace X t1
k,m whose γk,m satisfies γk,m ≥

t1, and X t1
k,m is written as

X t1
k,m =

d∏

i=1

[
θlowi , θuppi

]
, θlowi , θuppi ∈ R ∪ { −∞,∞ } . (5)

In (5), θlowi and θuppi are decided by the random forest algorithm. In AFT, we
have to assume Assumption 2.

Assumption 2 (In AFT). The path pk,m of regression tree Tk from root to
m-th leaf is represented as

pk,m =
{(

x1
≥
≤θ1

)
,
(
x2

≥
≤θ2

)
, · · · ,

(
xd

≥
≤θd

)}
. (6)

Assumption (6) means that for all i either θlowi = −∞ or θuppi = ∞ holds.
However, with the TRANS-AM, we do not adopt Assumption 2 because in many
actual cases the learned regression tree does not satisfy this assumption. Of
course we can build a regression tree by satisfying Assumption 2, but it is a
little messy and sacrifices prediction flexibility.

220 H. Tanaka et al.

3.3 ε-Satisfactory Instance

Let Xk be the family of all X t1
k,m in Tk;

Xk = {Xk,m | ∀x ∈ Xk,m, ĥk (x) = γk,m ≥ t1 } , (7)

where Xk,m satisfying ∀x ∈ Xk,m, ĥk (x) = γk,m ≥ t1 is X t1
k,m. Then, |Xk| is

often greater than 1. For all subspaces X t1
k,m ∈ X , we build the ε-satisfactory

instances x t1
k(ε) as following.

x t1
k(ε)[i] =

⎧
⎪⎨

⎪⎩

θuppi − ε θlowi = −∞
θlowi + ε θuppi = ∞
θlow

i +θupp
i

2 otherwise

(8)

In (8), ε means the distance between x t1
k(ε) and the boundaries of subspace, i.e.,

the position of x t1
k(ε) is determined by ε if θlowi = −∞ or θuppi = ∞.

The ε-satisfactory instance defined by (8) belongs to X t1
k,m ∈ X . If x t1

k(ε)[i] =
θuppi − ε, the i-th element of x t1

k(ε) is the point transformed by −ε from θi

for the negative direction parallel to the xi axis (or vice versa). If x t1
k(ε)[i] =(

θlowi + θuppi

)
/2, the i-th element of x t1

k(ε) is the centre of interval
[
θlowi , θuppi

]
.

In any case x t1
k(ε) ∈ X t1

k,m holds; therefore, ĥ
(
x t1

k(ε)

)
≥ t1 also holds.

3.4 Feature Transformation

Let X t1·,· be the set of all ε-satisfactory instances. More specifically, X t1·,· is writ-
ten by

X t1·,· =
K⋃

k=1

⋃

m:X t1
k,m∈X

x t1
k(ε), (9)

where x t1
k(ε) depends on subspace X t1

k,m. Therefore,
⋃

m:X t1
k,m∈X x t1

k(ε) means the
set of all the ε-satisfactory instances made using Tk. Then the transformed input
vector we want is given by solving the following optimization problem.

x ′ = arg min
x

t1
k(ε)∈X t1·,· |f̂

(
x

t1
k(ε)

)
≥t1

δ
(
x ,x t1

k(ε)

)
(10)

In (10), cost function δ means the distance between x and x t1
k(ε). With this δ,

we choose optimal vector x ′, i.e. the selected x ′ is nearest to the original input
vector. As we explained in Sect. 1, Cui et al. [14] proved that the OAE problem,
which is essentially identical to (10), is generally NP-hard, and the TRANS-
AM translates the OAE problem into a closed-form integer linear programming
(ILP) problem, which can be efficiently solved by off-the-shelf ILP solvers. On

TRANS-AM: Discovery Method of Optimal Input Vectors 221

the other hand, Tolomei et al. [2] introduced an algorithm to obtain x ′ by using
an ε-satisfactory instance.

In this paper, we used an expanded algorithm of Tolomei et al. [2] to discovery
x ′. We show the algorithm for finding x ′ in Algorithm 1. This algorithm seeks
x ′ which is solution of the following optimization problem:

x ′ = arg min
x

t1
k(ε)∈X t1·,·

δ
(
x ,xk(ε)t1

)
(11)

In (11), we dropped the condition f̂
(
x t1

k(ε)

)
≥ t1 of (10), because the condition

is implicitly satisfied by definition of ε-satisfactory instance. Algorithm 1 often
returns x ′ = x because sometimes all the ε-satisfactory instances x t1

j(ε) built

with Algorithm 1 do not satisfy the 8-th line if-statement f̂
(
x t1

j(ε)

)
≥ t1. Hence

we should evaluate the TRANS-AM carefully in Sect. 4.

Algorithm 1. Algorithm of TRANS-AM
Require: T = { T1, T2, · · · , TK }, thresholds t0, t1, input vector x such that f(x) < t0,

cost function δ, and ε > 0
Ensure: x ′ satisfying f̂ (x ′) ≥ t1
1: x ′ ← x
2: δmin ← ∞
3: for k = 1, 2, · · · , K do
4: if f̂ (x) < t1 ∧ ĥk (x) < t1 then
5: make Xk

6: for X t1
k,m ∈ Xk do

7: build ε-satisfactory instance x t1
j(ε)

8: if f̂
(
x t1

j(ε)

)
≥ t1 then

9: if δ
(
x , x t1

j(ε)

)
< δmin then

10: x ′ ← x t1
j(ε)

11: δmin ← δ
(
x , x t1

j(ε)

)

12: end if
13: end if
14: end for
15: end if
16: end for
17: return x ′

4 Numerical Simulation and Evaluation

In this section, we explain the results of numerical simulations. The aim with
TRANS-AM is to transform the input vector x with f̂ (x) < t0 to x ′ satisfying

222 H. Tanaka et al.

f (x ′) ≥ t1. If the random forest estimates the unknown target function f ,
Algorithm 1 can return x ′ such that f (x ′) ≥ t1. However, in practice the random
forest cannot estimate f completely, so the vector x ′ yielded from Algorithm
1 does not always satisfy f (x ′) ≥ t1, i.e. Algorithm 1 sometimes yields x ′

satisfying not f(x ′) ≥ t1 but f̂ (x) ≥ t1. Therefore, we should evaluate how many
vectors yielded from Algorithm 1 satisfy f (x ′) ≥ t1. For such an evaluation, we
should know the target function f ; hence, we evaluated the TRANS-AM not
through application for real datasets but numerical simulations.

As we mentioned in Sect. 3, Algorithm 1 often returns x ′ = x Therefore, we
use (18) as an indicator for evaluating this problem.

4.1 Experimental Setting

We evaluated the TRANS-AM with artificial data. The artificial datasets were
generated in the following steps, where 1 d is the d-dimensional vector whose
components are 1, Id is the d×d diagonal matrix whose diagonal components are
1, and Nd(1 d, Id) means the d-dimensional Gaussian distribution whose mean
vector is 1 d and covariance matrix is Id.

Step 1. generate x 1,x 2, · · · ,xN
i.i.d.∼ Nd (1 d, Id).

Step 2. make independent variable y1, y2, · · · , yN by yn = f (xn) + ηn, ηn
i.i.d.∼

N (0, 1)

Note that f in the above steps is the same as the unknown target function in
Sect. 3. In our simulation, we used the following functions as f(x).

f1 (x) = aTx (12)

f2 (x) = sin
(
aTx

)
(13)

f3 (x) =
n∑

i=1

ai sin xi (14)

f4 (x) = exp
(
aTx

)
(15)

f5 (x) =
1

1 + exp (aTx)
(16)

In functions (12)–(16), a ∼ N (0 , I) and ai is the i-th element of a . The TRANS-
AM has the parameters t0, t1 and ε. Parameters t0 and t1 are determined by
analysts according to their aim, and ε should be turned using some kind of
data-driven method. The following steps comprise the simulation process.

step 1. split the dataset D into training set Dtrain = {(xn, yn)}N0
n=1 and test set

Dtest = {(xn, yn)}N1
n=1, where N = N0 + N1

step 2. let t1 be the pupp percentile point of y ∈ Dtrain and let t0 be the plow
percentile point of y ∈ Dtrain.

step 3. fix ε to one of candidates of ε and train the random forest regressor
using Dtrain.

TRANS-AM: Discovery Method of Optimal Input Vectors 223

step 4. choose the input vectors in Dtest whose objective variables are less than
t0.

step 5. transform the input vectors to the new input vectors x ′ with the
TRANS-AM.

step 6. evaluate the TRANS-AM by using three criterion that are shown in (17),
(18), and (19).

Score P represents how many input vectors are transformed using the TRANS-
AM regardless of whether x ′ satisfies f (x ′) ≥ t1, score Q indicates how many
input vectors are modified per number of input vectors, and score R represents
how many modified input vectors x ′(
= x) satisfy f (x ′) ≥ t1 per number of
changed input vectors. Algorithm 1 often yields the same vector as an input
vector. Therefore, we evaluated how many yielded vectors satisfy our purpose
f(x ′) ≥ t1 per number of transformed vectors with the score R.

P =
|{x ′ | f (x ′) ≥ t1 }|∣∣∣{x | f̂ (x) < t0 }

∣∣∣
(17)

Q =
|{x ′ | x ′
= x }|∣∣∣{x | f̂ (x) < t0 }

∣∣∣
(18)

R =
|{x ′ | f (x ′) ≥ t1 }|

|{x ′ | x ′
= x }| (19)

Among these three scores, a relationship P = QR holds. Score P is most
noticeable score and scores Q and R construct P . We simulated all combinations
of ε ∈ { 0.01, 0.05, 0.1, 0.5, 1, 1.5 }, N0 = 1000, N1 = 250 and d = 50.

4.2 Result and Consideration

We show the simulation results in Figs. 1, 2 and 3. Figure 1 shows the relationship
between ε and score P , Fig. 2 shows the relationship between ε and score Q, and
Fig. 3 shows the relationship between ε and score Q. In the each figure, linear,
sin, sinsum, exp, and logistic mean the datasets generated by (12), (13), (14),
(15), and (16), respectively.

As shown in Fig. 1, for (plow, pupp) = (40, 60), the dataset generated by (16)
shows the best score P . In addition, (13) shows the second-best score P . This is
because (16) and (13) are upper bounded, i.e. ∃K : const. s.t. ∀x ∈ R, f(x) <
K. As we explained in Sect. 3, the regression tree splits the input space into
subspaces {Xm }M

m=1 then corresponds γm with Xm. The precisions of approx-
imating the functions that are not upper bounded with random forest become
worse due to this approximation. For example, suppose that we approximate the
function g(x) = exp(x) and can use the regression tree. Then the input space
is divided into M subspaces X1, · · · ,XM . The prediction value γm of x ∈ Xm is
generally (1/| {x ∈ Xm } |)

∑
x∈Xm

x, where x is the training sample. Therefore,
the difference ‖f(x) − γm‖ increases as x becomes larger.

224 H. Tanaka et al.

Fig. 1. Relationships between ε and P

Fig. 2. Relationships between ε and Q

Fig. 3. Relationships between ε and R

On the other hand, in Fig. 1(b) and (c), the score P for the dataset generated
by (16) becomes worse than that in the case of Fig. 1(a). The distribution of
f(x ′) is illustrated in Fig. 4. As shown in Fig. 4, the threshold is pulled in the
positive direction as percentile point becomes larger. Essentially, the objective
variable does not appear in the region upper than 1 due to the range of (16);

TRANS-AM: Discovery Method of Optimal Input Vectors 225

Fig. 4. Distributions of the objective variables generated by (16) and the threshold

we call the range of f(x) “essential range of the objective variable”—the noise
η affects the range of the objective variable. The reason why the threshold in
the centre and right of Fig. 4 is greater than 1 is affection of noise η. In the case
of Fig. 4(b) and (c), the setting of simulation—we aim to transform x into x ′

satisfying f(x ′) ≥ pupp—is essentially impossible, because the objective variable
does not become greater than pupp. Therefore, the results of Fig. 4(b) and (c)
are not strange. Videlicet, the settings of the centre and right of Fig. 5 are not
suitable, i.e. it is essentially impossible to obtain the transformed input vector
x ′ satisfying f(x ′) ≥ tupp because the threshold is out of the essential range of
the objective variable.

As shown in Fig. 2(a) and (b), each score R is higher than 0.8, except for exp.
These results mean that for the datasets generated by (15), Algorithm 1 cannot
transform x into x ′. This is also because random forest cannot approximate
Exponential Function (15) well. Of course, other functions (12) and (14) are
not upper bounded. However, Exponential Function (15) diverges to infinity
earlier than (12) and (14). For f(x) = exp(ax), the difference between f(x)
and f(x + c), where c is a very small positive integer, is larger than that for
f(x) = ax. Therefore, the approximation precision for the dataset generated by
(15) becomes worse than that for the other. If the prediction precision is very
bad, the condition f̂

(
x t1

j(ε)

)
≥ t1 in Algorithm 1 cannot be satisfied, i.e. x is

yielded using Algorithm 1. Therefore, we can conclude that for the dataset whose
objective variable is generated by the exponential function of the input variable
of the TRANS-AM cannot find the modified x ′. In the right figure of Fig. 2,
turning the ε well, the score Q become higher than 0.8.

As shown in the Fig. 3(a), the score Rs for the datasets generated by (13) and
(16) can be greater than 0.4 by turning ε for plow = 40, pupp = 60. In Fig. 3(b)
and 1(c), however, the score R for the datasets generated by (16) one of the
lowest. The reason is referred to in the discussion of Fig. 1. As plow becomes
smaller and pupp becomes larger, the score R decrease.

Figure 5 illustrates the reason that the TRANS-AM performs well for the
dataset generated by (13). The thresholds pupp for sin are not pulled in the

226 H. Tanaka et al.

Fig. 5. Distributions of the objective variables generated by (13) and the threshold

positive direction so strongly, as for logistic, i.e. the threshold appears in the
essential range of the objective variable. Therefore, the TRANS-AM performed
better for the dataset generated by (13) than for the other datasets.

In all of that, the TRANS-AM does not work if the following Case 1 or 2
holds:

Case 1: the random forest cannot approximate the target function, e.g. the
objective variables are generated from an upper unbound function;

Case 2: the threshold is out of the essential range of the objective variable.

The case 1 corresponds to the case of exp (see Figs. 1, 2 and 3) and the case
2 corresponds to the case of sin and logistic (see the centre and right of Fig. 1
and 3). However, if neither of the two cases holds, TRANS-AM will work well—
we can obtain the input vectors satisfying that the objective variables are greater
than the threshold from the candidates of input vectors by the score P ≥ 45.

5 Conclusion

We proposed the TRANS-AM for discovering a new input vector to increase the
objective variable greater than a given threshold or decrease it than the threshold
with minimizing δ in a regression task. We relaxed the restrictions assumed by
Tolomei et al. [2] because the restrictions were not reasonable for random forest.
As we discussed in the introduction, we are often faced with the question “How
do we modify the input vector to increase the objective variable greater than
the given threshold or decrease it than the threshold with minimum effort?” The
TRANS-AM is an answer to this question and we have disclosed the situation
that the method works well.

In the TRANS-AM, we generated candidates of the new input vector by
ε-satisfactory instances. The ε-satisfactory instances satisfy the condition, i.e.
the objective variables corresponding to the ε-satisfactory instances are greater
than the threshold. Then we select the new input vector which minimizes the

TRANS-AM: Discovery Method of Optimal Input Vectors 227

distance between the original input vector and new one—we select the new input
vector by (11).

Considering the use case of the TRANS-AM, we have to pay attention to what
kind of input variables are contained in the input vector. The transformation by
TRANS-AM affects all of the input variables generally, because of (8). Therefore,
in the use case, we have to use only input variables which can be changed. In
the case of example referred in Sect. 1—we are strategists of a soccer team, we
can use the energy, speed of players. However, we cannot use the body size of
the players, because we cannot control their values.

We evaluated the TRANS-AM by moving ε and the thresholds—plow and
pupp—in Sect. 4. Then we found that for the dataset whose objective variables
are generated by the sin formula, the TRANS-AM shows good precision; score
P and score R are maximum or pre-maximum in each case of Figs. 1 and 3.
On the other hand, for the dataset whose objective variables are generated by
(16), the TRANS-AM does not work well except when (plow, pupp) = (40, 60). In
such a situation, it is hard for TRANS-AM to find the transformed input vector
satisfying the condition. These considerations are summarized as the Case 1 and
Case 2. If we avoid the two cases, i.e. we can approximate the target function
by the random forest and the threshold is not out of the essential range of the
objective variable; we obtain the transformed input vector efficiently by using
TRANS-AM.

For future works, we plan to extend the TRANS-AM for gradient boosting
[17] and XGBoost [18]—these additive tree models are effective predictors for
various fields [13,19–21]. TRANS-AM works well for datasets whose objective
variables are generated by the sin formula but does not work well for datasets
whose objective variables are generated by an upper unbounded formula (e.g.
exp formula). Therefore, a method that works well for upper unbounded datasets
is required for discovering new input vectors whose objective variables are larger
than a given threshold.

Acknowledgement. This research was partially supported by NAIST Big Data
Project.

References

1. Breiman, L.: Random forests. Mach Learn. 45(1), 5–32 (2001)
2. Tolomei, G., Silvestri, F., Haines, A., Lalmas, M.: Interpretable predictions of tree-

based ensembles via actionable feature tweaking. In: Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
465–474. ACM (2017)

3. Cao, L., Luo, D., Zhang, C.: Knowledge actionability: satisfying technical and
business interestingness. IJBIDM 2, 496–514 (2007)

4. Hilderman, R.J., Hamilton, H.J.: Applying objective interestingness measures in
data mining systems. In: Zighed, D.A., Komorowski, J., Żytkow, J. (eds.) PKDD
2000. LNCS (LNAI), vol. 1910, pp. 432–439. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-45372-5 47

https://doi.org/10.1007/3-540-45372-5_47
https://doi.org/10.1007/3-540-45372-5_47

228 H. Tanaka et al.

5. Liu, B., Hsu, W.: Post-analysis of learned rules. In: AAAI/IAAI, vol. 1, pp. 828–834
(1996)

6. Liu, B., Hsu, W., Ma, Y.: Pruning and summarizing the discovered associations. In:
Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 125–134. ACM (1999)

7. Cao, L., Zhang, C.: Domain-driven, actionable knowledge discovery. IEEE Intell.
Syst. 22(4) (2007)

8. Cao, L., Zhao, Y., Zhang, H., Luo, D., Zhang, C., Park, E.K.: Flexible frameworks
for actionable knowledge discovery. IEEE Trans. Knowl. Data Eng. 22(9), 1299–
1312 (2010)

9. Du, J., Hu, Y., Ling, C.X., Fan, M., Liu, M.: Efficient action extraction with
many-to-many relationship between actions and features. In: van Ditmarsch, H.,
Lang, J., Ju, S. (eds.) LORI 2011. LNCS (LNAI), vol. 6953, pp. 384–385. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24130-7 29

10. Karim, M., Rahman, R.M.: Decision tree and naive bayes algorithm for classifica-
tion and generation of actionable knowledge for direct marketing. J. Softw. Eng.
Appl. 6(04), 196 (2013)

11. Yang, Q., Yin, J., Ling, C., Pan, R.: Extracting actionable knowledge from decision
trees. IEEE Trans. Knowl. Data Eng. 19(1), 43–56 (2007)

12. Yang, Q., Yin, J., Ling, C.X., Chen, T.: Postprocessing decision trees to extract
actionable knowledge. In: Third IEEE International Conference on Data Mining,
ICDM 2003, pp. 685–688. IEEE (2003)

13. Friedman, J., Hastie, T., Tibshirani, R.: The elements of statistical learning.
Springer Series in Statistics, vol. 1. Springer, New York (2001). https://doi.org/
10.1007/978-0-387-21606-5

14. Cui, Z., Chen, W., He, Y., Chen, Y.: Optimal action extraction for random forests
and boosted trees. In: Proceedings of the 21th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 179–188. ACM (2015)

15. Manindra, A., Thomas, T.: Satisfiability problems. Technical report (2000)
16. CPLEX, I.I.: V12. 1: User’s manual for cplex. Int. Bus. Mach. Corp. 46(53), 157

(2009)
17. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4),

367–378 (2002)
18. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery And
Data Mining, pp. 785–794. ACM (2016)

19. Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A.,
Cook, M., Moore, R.: Real-time human pose recognition in parts from single depth
images. Commun. ACM 56(1), 116–124 (2013)

20. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2),
137–154 (2004)

21. Tyree, S., Weinberger, K.Q., Agrawal, K., Paykin, J.: Parallel boosted regression
trees for web search ranking. In: Proceedings of the 20th International Conference
on World Wide Web, pp. 387–396. ACM (2011)

https://doi.org/10.1007/978-3-642-24130-7_29
https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.1007/978-0-387-21606-5

	TRANS-AM: Discovery Method of Optimal Input Vectors Corresponding to Objective Variables
	1 Introduction
	2 Related Work
	3 TRANS-AM: Proposed Method
	3.1 Notation
	3.2 Split Input Space with Regression Tree
	3.3 -Satisfactory Instance
	3.4 Feature Transformation

	4 Numerical Simulation and Evaluation
	4.1 Experimental Setting
	4.2 Result and Consideration

	5 Conclusion
	References

