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Sentence-based image description has become an active 
research topic for computer vision and NLP

Available datasets 
Contain image and English text description (Flickr8K, Flickr30K, MSCOCO)
Extended to difference languages:
 Flickr30K has been extended to German, French, and Czech
MSCOCO has been extended to Japanese
 Flickr8K has been extended to Chinese

Background

Applications:
 Automatic image description (X. He et al. 2017, A. Karpahty et al. 2014)
 Image retrieval based on textual data (Y. Fend et al. 2010)
 Visual Question Answering (Z. Yang et al. 2010)
Multimodal MT (L. Specia et al. 2016, D. Elliot et al. 2017)

Indonesian image description does not exist yet!
This paper: Construct of image description in the Indonesian language 
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Sentence-based image description in a new language
 Direct image captioning

 Text translation (manually or automatically by MT)

Most existing works use the translation method
 A new dataset in target languages will have identical meaning with 

the source language
 It is argued that an image can represent a universal concept.  

Thus, given the same image, the text descriptions in different 
languages shall have identical semantic meaning

 However: 
Neuroscience studies found a difference in visual perceptions based 
on different cultural backgrounds

Related Works

Further study of the effect of cultural background on visual 
perception may be necessary
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Multi30K: Multilingual Image Description 
(D. Elliot et al. 2016)
 The only existing work that did both direct captioning and translation

 30K English-German image description
(1) Translation English-to-German without given the images
(2) Direct captioning of images in German without given 

the English description
 Analysis of the difference in sentence length 

Result: The German translations are longer than the 
independent captioning (11.1 vs. 9.6 words)

Related Works

In this study, we attempted to investigate the difference 
by calculating syntactic and semantic distance
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Utilize image description corpus from WMT Multimodal 
machine translation challenge
WMT Training set: Flickr30K (31,783 images, 5 English desc./image)

WMT Dev set : 1015 images, 5 desc./image
WMT Test set 2017 : 1000 images, 1 desc./image
WMT Test set 2018 : 1071 image, 1 desc./image

Corpus Construction

Construct image description in Indonesian Language
(1) Translation English-to-Indonesian without giving the images
(2) Direct captioning of images in Indonesian without giving 

the English description

 Analysis the difference in syntactic and semantic distance
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English-to-Indonesian Translation (Eng2Ind_Translation)
 Automatic translation with Google Translate API

 Data: Flickr30K training set, dev set, and test set 2017-2018
 Resulting 166,061 translation

Translation

Manual Validation by Indonesian crowdworkers
(Eng2Ind_PostEdit)
 Post-editing to correct any errors in translation results 

without having the corresponding images
 Crowdworkers

- Native Indonesian (4M, 5F)
- 20-30 years old
- Minimum works: 250 sentences per session

 Data: Only dev set and test set 2017-2018
 Resulting 7,146 post-edited sentences
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Direct Image Captioning (Ind_Caption)
 Indonesian captioning without having English description or 

English-to-Indonesian translation (suggested range: 5-25 words/sent)

 Crowdworkers

- Native Indonesian (7M, 15F)

- 20-30 years old

- Minimum works: 200 images (one caption/image) per session

 Data: 10K of Flickr30K training set, dev set and test set 2017-2018

Direct Captioning
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 Investigate the quality of Eng2Ind_Translation 
by treating Eng2Ind_PostEdit as the reference

Sentence Length
 No significant difference in the number of the words per sentence 

between Eng2Ind_Translation and Eng2Ind_PostEdit
 About 12 words per sentence

Translation error rate (TER) (M. Snover, et al., 2006)
Minimum number of edits (ins, del, sub, shift) in the translation so 

that it exactly matches the corresponding reference
 Average TER was about 5%

The quality of Eng2Ind_Translation is still acceptable

Quality of Automatic Translation
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Syntax Analysis
 End2Ind_Translation sentences are 7.5% longer than the sentences 

in Ind_Caption
 Frequencies of POS tag

Translation vs Direct Captioning
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Semantic Analysis
 Semantic distance between Eng2Ind_Translation and Ind_Caption

 Semantic embedding with Word2Vec/FastText
- Word2vec treats each word in a corpus like an atomic entity and 

generates a vector for each word
- FastText treats each word as composed of character ngrams

 Semantic distance 

Translation vs Direct Captioning
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Semantic Analysis

Translation vs Direct Captioning

 Semantic dist. between Ind_Caption and Eng2Ind_Translation are always 
farther away than the distance among Eng2Ind_Translation themselves

 Almost 50% of Indonesian image descriptions lies outside of the 
threshold (max dist. among translations)

Sakriani Sakti  @ AHC Labs, NAIST, Japan | SLTU 2018 | August 29th-31st, 2018



18

Semantic Analysis

Translation vs Direct Captioning

Shortest Distance (Image  a3) Furthest Distance (Image b2)

Eng_Caption A black dog is running along the beach Green Bay Packer player cooling off

Eng2Ind_Translation Seekor anjing hitam berlari di sepanjang
pantai

Pemain Green Bay Packer sedang
mendinginkan diri

Ind_Caption Seekor anjing hitam sedang berlari-lari di 
pantai

Pemain dengan nomor punggung 4

Ind2Eng_Translation A black dog is running around the beach Player whose number is 4
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 Constructed Indonesian image description
 Eng2Ind_Translation: English-to-Indonesian automatic translations 

(WMT training set Flickr30K, dev set and test sets 2017-2018)      
 Eng2Ind_PostEdit: Manual post-edits on Eng2Ind_Translation 

(WMT dev set and test sets 2017-2018)
 Ind_Caption: Direct Indonesian captioning 

(10K of Flickr30K, dev set and test sets 2017-2018)

 Analysis
 Syntactic: Sentence length of Eng2Ind_Translation > Ind_Caption
 Semantic: Almost 50% Indonesian image descriptions lies outside 

the threshold (max dist. among translations)

 An image may represent a universal concept, but visual perception 
greatly depends on cultural backgrounds
 Currently: Given the images, we construct the captions for Indonesian
 Further work: 

- Extend to other ethnic languages
- Given identical captions or translated version, investigate whether 

people from different cultural backgrounds can produce similar images 

Conclusion
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