Optimizing DPGMM Clustering in Zero-Resource Setting based on Functional Load

Bin Wu¹, Sakriani Sakti^{1,2}, Jinsong Zhang³ and Satoshi Nakamura^{1,2} {wu.bin.vq9,ssakti,s-nakamura}@is.naist.jp, jinsong.zhang@blcu.edu.cn

- 1. Nara Institute of Science and Technology, Japan
- 2. RIKEN, Center for Advanced Intelligence Project AIP, Japan
 - 3. Beijing Language and Culture University, China

Background

Unsupervised subword unit discovery

- Modern ASR system depends on rich resources:
 - annotated training corpora
 - carefully designed dictionary
 - high-order language model
- However, for 7000 living languages, most of them are low resources:
 - lack of expert knowledge of phonemic system
 - some not have written forms
- Unsupervised subword unit discovery of Zerospeech was proposed (Park, 2008; Versteegh, 2015)

Previous methods

- Unsupervised subword unit discovery of Zerospeech
 - Early works: DTW (Park, 2008); HMM-split (Varadarajan, 2008)
 - DNN based method:
 - Spoken term detection + autoencoder(Badino 2014, Kamper, 2015; Pitt, 2015)
 - Spoken term detection + ABnet (Synnaeve 2014, Thiolliere, 2015)
 - Nonparameteric Bayesian based methods
 - Variational autoencoders (Ondel, 2016; Ebber, 2017)
 - Dirichlet Process Gaussian Mixture Model (DPGMM Clustering) (Lee, 2012; Chen, 2015; Heck, 2016)

DPGMM Clustering

- DPGMM clustering method gets relative good performance:
 - top results of the Zerospeech Challenge 2015 (Chen, 2015)
 - → improved by feature transformations + iterative ASR optimization (Heck, 2016)
 - top results of the Zerospeech Challenge 2017 (Heck, 2017)
- Problem of DPGMM clustering:
 - # of sub-word clusters > # of phonemes of usual languages
 - e.g. # of sub-word clusters 321 (Chen, 2015); 192 (Heck, 2016)
 - posteriorgram with high dimension (high computational cost; overfitting)

Problem

Proposal

Basic idea

Merge the pairs of sub-word units with different context

Minimal pairs

4 1

4 2 5

DPGMM Clusters

Merge Minimal pairs

4 1 5

4 1 5

6 3 7

Complementary distribution

4 1 5

6 1 7

Merge Complementary distribution

Functional load

- Any pair of sub-word units that can be disambiguated by the context (their surrounding units) easily has low functional load. (Wang, 1967)
- Functional load of a contrast
 - Definition: the importance of the contrast in speech communication
 - Computation: on loss of entropy (Hockett, 1955)
 - e.g. functional load of a contrast of a sub-word unit pair x and y

$$FL(x,y) = \frac{H(L) - H(L_{xy})}{H(L)}$$

 Proposal: merge the sub-word units with low functional load to reduce the redundancy of the DPGMM sub-word units

Training framework

Figure 1: System to optimize DPGMM based on functional load.

Experiment & Result

Corpus

- Xitsonga corpus
 - an excerpt the NCHLT corpus of South African read speech
 - with the official segmentation of Interspeech Zero Resource Speech Challenge 2015
 - length: 2 h 29 min

Results

Table 1: ABX error rate from Chen, Heck and this paper (FLm: result after m iterations of functional load merge of DPGMM label pairs)

Existing systems	Number of labels	Within speaker	Across speaker
DPGMM (Chen, 2015)	321	9.6	17.2
DPGMM (Heck, 2016)	192	8.9	14.2
DPGMM + PCA (Heck, 2016)	239	9.8	16.4

Conclusion

- We merge DPGMM sub-word units greedily with low functional load.
- We reduce the number of sub-word units by more than two thirds and still get relatively good ABX error rate.
- The number of remaining units is close to that of phonemes in human language.

Thank you for listening!