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Abstract
Inspired by infant language acquisition, unsupervised sub-

word discovery of zero-resource languages has gained atten-
tion recently. The Dirichlet Process Gaussian Mixture Model
(DPGMM) achieves top results evaluated by the ABX discrim-
ination test. However, the DPGMM model is too sensitive to
acoustic variation and often produces too many types of sub-
word units and a relatively high-dimensional posteriorgram,
which implies high computational cost to perform learning and
inference, as well as more tendency to be overfitting.

This paper proposes applying functional load to reduce the
number of sub-word units from DPGMM. We greedily merge
pairs of units with the lowest functional load, causing the least
information loss of the language. Results on the Xitsonga cor-
pus with the official setting of Zerospeech 2015 show that we
can reduce the number of sub-word units by more than two
thirds without hurting the ABX error rate. The number of units
is close to that of phonemes in human language.
Index Terms: Zero-resource speech recognition, functional
load, Dirichlet process Gaussian mixture model

1. Introduction
Modern speech recognition systems rely on large amounts of
human-generated annotations and language resources based
on human knowledge to achieve relatively good performance.
However, it is known that with almost no previous knowledge,
a first-year infant can recognize sub-words and words from the
human language [1]. Inspired by the study of infant language
acquisition, the speech processing community set up a chal-
lenge of discovering the word and sub-word units of a language
completely from scratch [1]. Building a quantitative model
for this task also serves as the basis for developing a universal
speech recognition system for a completely unknown language.

One of the methods to tackle this problem is to use an unsu-
pervised clustering algorithm to recover the discrete phone-like
units from speech, such as the DPGMM model, which currently
achieves the top results evaluated by the ABX discrimination
test: Chen et al. achieved the top results of the Zerospeech Chal-
lenge 2015 using DPGMM [2]; Heck et al. further improved the
results by using feature transformations before DPGMM [3, 4]
and iteratively training DPGMM-HMM acoustic unit recogniz-
ers [5].

However, the DPGMM model is too sensitive to acoustic
variation; it often produces hundreds of types of sub-word units,
which is too many compared to the usual number of phone
classes of the phonological system. This implies there exists re-
dundancy in DPGMM sub-word units, which may contributes
little in modeling sub-word units.

Too many sub-word units also produces a posteriorgram
with high dimension; the high dimensionality usually causes
high computational cost to perform learning and inference, as
well as more tendency to be overfitting. Decreasing the number
of types of sub-word units also reduces the dimension of the
posteriorgram. In [3, 4], they use Linear Discriminant Analysis
(LDA) and Principle Component Analysis (PCA) to reduce the
dimension of feature vector before DPGMM sampling. How-
ever, they do not necessarily reduce the number of DPGMM
sub-word units and the dimension of the posteriorgram — the
final representation for each frame. In addition to posteriorgram
representation, we can also reduce the dimension of frame-
based embedding representation using auto-encoder [6, 7].

This paper proposes to merge the sub-word units with low
functional load to reduce the redundancy of the sub-word units
generated by the DPGMM clustering.The key idea is that any
pair of sub-word units, acoustically similar or different, that can
be disambiguated by the context (their surrounding units) eas-
ily has low functional load [8]. We ignore such contrasts of
units that can be easily recovered by context; the load of their
communicative function actually is quite low; even if we ignore
them, it will cause little information loss in speech communica-
tion. For example, in our daily speech communication, people
are often lazy to listen to every phonetic unit clearly, but some-
times infer some units from their context.

Functional load is a measure of the work that two phono-
logical units — such as two sub-word units — do in keeping
the utterances apart [9, 10]. For example, in English, hundreds
of word pairs differ only in /p/ and /b/ (e.g. pat vs. bat), but very
few word pairs differ only in /S/ and /Z/ (e.g. asher vs. azure).
We just presume that the contrast of /p/ and /b/ does more work
than that of /S/ and /Z/ in telling complete utterances apart, im-
plying high functional load.

We can quantify the functional load of the contrast of two
phonological units by how much information they convey in
speech communication using information theory [10, 8, 11];
functional load has already been applied in the study of phono-
logical system [12, 13, 14, 15], sound change [10, 8], speech
recognition [16], etc. Diachronic linguistics study shows that
for human language, some contrasts of phones with high func-
tional load remain in language evolution while contrasts with
low functional load tend to disappear [9, 8]. It is also shown
that merging the sub-word units with low functional load helps
to improve the performance of speech recognition systems [16].
Inspired by these findings, this paper aims to ignore the con-
trasts of the sub-word units with low functional load, which
contribute little in conveying the information of speech com-
munication. Then we can decrease the number of types of sub-
word units to optimize the DPGMM clustering.
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Figure 1: System to optimize DPGMM based on functional load.

2. Functional Load
2.1. Theory of functional load

We will use the measurement of functional load based on en-
tropy loss [10]. Assume that our language is a sequence of
labels — in this paper, as a sequence of sub-word units identi-
fied by the DPGMM — generated from a stationary and ergodic
stochastic process [17]. Then we can approximate entropyH of
the language L as

H(L) = − 1

K

n∑
i=1

p(si) log p(si) , (1)

where si is any label string with length K, and n is number of
different types of label strings occurring in the language.

The functional load of the contrast of label x and label y
is computed by the decrease of the entropy if we ignore their
difference: replacing each label xwith label y in given language
L.

FL(x, y) =
H(L)−H(Lxy)

H(L)
, (2)

where Lxy is the new language with label x and label y merged.

2.2. Minimum functional load based label merge

We design Algorithm 1 to compact the redundancy of the label
set of a language by greedily merging the pairs of labels by the
least functional load criteria similar to [16]:

Algorithm 1 Minimum functional load-based label merge
while number of label types is greater than threshold do

1. Functional Load Calculation: for each merge of
label pair in the language, compute its functional
load with the order K based on Eq. (1) and Eq. (2).

2. Merge Decision: merge the pair of labels that leads
to the least information loss with the minimum
functional load.

(x*, y*) = arg min
(x,y)

FL(x, y) (3)

3. Update: renew the language label sequence by
merging the optimal label pair (x*, y*) and output
current label sequence of the language.

end while

3. Optimizing DPGMM based on
Functional Load

3.1. DPGMM sampling

DPGMM can be regarded as an infinite Gaussian mixture
model. Given the observations x = x1, . . . , xN , a DPGMM
can be constructed as follows:

1. Mixture weights π = {πk}∞k=1 are generated from the
stick-breaking process[18].

2. The Gaussian mixture parameters θ = {θk}∞k=1 are gen-
erated from a prior called Normal-Inverse-Wishart dis-
tribution [19] with the parameter θ0 = (m0, S0, κ0, ν0),
where θk includes the mean and variance of kth mixture
of Gaussian, and κ0, ν0 are the belief-strengths of the
prior mean m0 and the prior variance S0 respectively.

3. Assign a label zi to every observation xi according to
the mixture weights π.

4. Generate xi according to zi-th Gaussian component.

After constructing the DPGMM, we can generate the pos-
teriorgram for each frame [2].

3.2. DPGMM-HMM acoustic unit recognizer

In this paper, we use the ASR system to get a posteriorgram
that is more robust to non-linguistic factors such as speakers and
channels. We follow the same procedure as [5]: build an ASR
system from the DPGMM labels; use the posteriorgram of the
ASR system for the ABX discrimination test. We use the typical
ASR [20] that includes monophone training, triphone training
followed by LDA, maximum likelihood linear transforms and
speaker adaptive training.

3.3. Use of functional load

We build the system as depicted in Figure 1. First, from the
raw audio corpus, we apply the DPGMM sampling to get the
DPGMM cluster posteriorgram and the DPGMM label for each
frame. Then, we send the DPGMM posteriorgram to the ABX
discrimination test; at the same time, the DPGMM label classes
are iteratively merged according to the minimum functional
load criteria such that the contrasts of the labels that do little
in conveying information will be ignored.

Along the way, we extract the ASR posteriorgam by build-
ing the ASR system on the label sequence; the dimension of the
ASR posteriorgram will be lower and lower after doing more
and more mergers of label pairs greedily based on the minimum



Figure 2: Example of DPGMM clustering of sub-word units. The top layer is spectrum followed by the DPGMM label layer, phoneme
layer and word layer. In the second layer, each color denotes one specific type of sub-word units.

functional load criteria. Finally, we evaluate the ASR posterior-
gram by the ABX discrimination test.

4. Experiment setup
4.1. Zero-resource speech data

We conduct all our experiments on the official data set of Inter-
speech Zero Resource Speech Challenge 2015. We use the Xit-
songa corpus, which is an excerpt the NCHLT corpus of South
African read speech. The evaluation is conducted on the official
segmentation of the audio corpus with a length of 2 h 29 min.

4.2. DPGMM label extraction

The DPGMM sampling experiment is done by toolkit [21]. The
setting of parameters we use is the same as [2, 3]. We use the
39-dimensional MFCC+∆+∆∆ features with a window size of
25ms and a window shift of 10ms, which are followed by the
mean and variance normalization (MVN) and vocal tract length
normalization (VTLN).

The DPGMM sampling is stopped after 1500 iterations
with the parameter setting the same as [2, 3]: the concentration
parameter α = 1; the prior of the mean m0 and the variance S0

as the global mean and the global variance with belief-strengths
κ0 = 0 and µ0 = D+ 3 respectively, where D is dimension of
MFCC features (D = 39) .

4.3. DPGMM-HMM acoustic unit recognizer

We use the Kaldi toolkit [20] and follow the standard recipe of
the TIMIT corpus [22] except for three modifications:

1. We use the 1-state HMM instead of the 3-state HMM
because lots of DPGMM labels exist with only a few
frames; 3-state HMM fails to capture the temporal vari-
ation of DPGMM labels.

2. We don’t make a model for silence. In our experiment
on the TIMIT corpus, we found that DPGMM clustering
does well in recognizing the silence part and has already
assigned some labels for the silence (Figure 2).

3. We use language model with higher order. As the
DPGMM algorithm is sensitive to the acoustics, it gen-
erates many of its sub-word units with shorter duration
than usual phones of human language. The default bi-
gram of the TIMIT recipe is a bit short for modeling the

context of DPGMM labels. In our experiment, we use
the 4-gram for the language model as [5], which will im-
prove the performance of the ABX test as we have better
context.

4.4. Functional load computation

For the computation of functional load, we set the length K of
the sub-word unit string in equation (1) as 3.

4.5. ABX discrimination test

Suppose that we want to get the ABX error rate [23] of two
categories with distribution P and distribution Q given some
distance measure d. First, we randomly draw two observations
a, x from distribution P and an observation b from distribution
Q; then we say we make an error of distinguishing these two
categories if the distance of two observations (dax) from the
same category is larger than the distance of two observations
(dbx) from different categories. Thus, the ABX error rate is
defined as
e(P,Q) = E

a∼P,b∼Q,x∼P
(I(dax ≥ dbx)− 1

2
I(dax = dbx)),

(4)
where E is the expectation, and I is the indicator function.

We use the ABX toolkit [24] for experiments. The ABX
error rate is computed on the categories of the minimum pairs
of triphones with distance measure as KL-divergence, as sug-
gested by [1] when evaluating the posteriorgram representation.

5. Experiment Result and Discussion
5.1. Analysis of DPGMM clustering

To analyze the sub-word units generated by DPGMM cluster-
ing, we want to compare it with the true phones in the lan-
guage. As Xitsonga has no annotation of time information of
each phone, we do some preliminary experiments by running
the DPGMM algorithm on the training set (3.14 hours with
clean read speech) of the TIMIT corpus [22].

Figure 2 shows that DPGMM does well in discovering seg-
ments of silence; the fricative s and the fricative f are quite frag-
mentary — one phone corresponding to several different short
DPGMM sub-word units — because the fricatives have high
frequency; the vowel i in the word field is fragmentary because
of the sharp change of the formants.



We conclude that DPGMM clustering is sensitive to acous-
tic variation such as high frequency and change of formats,
while if there is no change of acoustics (e.g. the silence seg-
ments), DPGMM does well in recognition of sub-word units.

5.2. Analysis of functional load merger
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Figure 3: Entropy of language and functional load of label pair
merged after each iteration
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Figure 4: ABX error rate across and within speakers. Chen
within, Heck within and Within are results from [2], Heck et
al. [3] and this paper using the same setup of parameters. The
blue line is ABX error rate after each iteration of functional
load merge.

Figure 3a shows that as we merge more and more label
pairs, the entropy of the language decreases monotonically.
This is because it will cause more damage to the information
transmission of the language as we can’t distinguish more and
more label pairs. Figure 3b shows that the functional load at the
beginning of mergers is very small. In our experiments, we find
that the functional load of the first 17 pairs of the labels is zero.

Merging pairs with zero functional load does not cause any
information loss of the language. In [8], it can be proved that
the functional load of a label pair is zero if and only if the label
pair is in complementary distribution. That means each of the
first 17 label pairs has completely a different context. Even if
the pair of labels is merged, we can still distinguish them from
their context —surrounding labels.

5.3. Evaluation by ABX discrimination test

Table 1: ABX error rate from [2], [3] and this paper. Paper [2]
achieved the top results in Zerospeech 2015; paper [3] im-
proved the performance of [2]. FLm: result after m iterations
of functional load merge of DPGMM label pairs

Existing systems Num. of
Labels

Within
Speakers

Across
Speakers

DPGMM (c) [2] 321 9.6 17.2
DPGMM (h) [3] 192 8.9 14.2
DPGMM + PCA (h) [3] 239 9.8 16.4

Proposed system
DPGMM + FL0 188 8.4 13.4
DPGMM + FL12 176 8.6 13.2
DPGMM + FL70 118 8.9 14.2
DPGMM + FL120 68 9.6 15.0

For comparison, we use the same parameter setting as [2, 3]
for DPGMM sampling; we use officially provided voice activity
detection segmentations (2.5 hours) like [3] while [2] used all
Xitsonga corpus (6.52 hours) for training DPGMM; we use the
same official data to do the ABX error rate evaluation as [2, 3].

Figure 4 shows that the ABX error rate of the ASR posteri-
orgram of the first 20 pairs of label mergers is relatively stable.
Actually, our experiments show that merging the first 17 pairs
of labels doesn’t change the entropy of the language.

Table 1 and Figure 4 shows that if we merge about half of
the labels (188 → 118), we can get a similar ABX error rate
to Heck’s [3]; if we merge about two thirds of the size of labels
(188→ 68), we can get a similar ABX error rate to Chen’s [2].
This implies that by merging the labels with low functional load,
we can reduce the size of the DPGMM labels without hurting
much of the performance in the ABX test. In Table 1, the result
[3] of applying PCA on MFCC features stacking context is also
listed.

6. Conclusions
In this paper, we reduced the number of DPGMM sub-word
acoustic units by merging units with the least information loss
of the language: the minimum functional load. Even if we
lose the contrasts of these units, they can be recovered from the
surrounding context easily, as indicated by their low functional
load. Results show that we can reduce the number of sub-word
units by more than two thirds without hurting the ABX error
rate. The number of units is close to that of phonemes in human
language.
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