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Multi-encoder NMT (Zoph and Knight, 2016) 

Use multiple encoders
corresponding to the source 

languages and single decoder 

Mixture of NMT Experts (Garmash and Monz, 2016) 

Ensemble together independently-

trained encoder-decoder networks.

Use sum of probabilities from one-to-

one models weighted according to a 

gating network
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2.  Experiments
1. Pseudo-incomplete multilingual corpus (UN6WAY) 2. An actual incomplete multilingual corpus (TED Talks)

Using pseudo incomplete corpus 
created from complete corpus

Corpus : UN6WAY

Source language :  

Spanish, French, Arabic

Target Language : English

Training sentences : 800K

Test set : complete

Corpus : Transcriptions of TED Talks

Language Pair :

{English, French, Brazilian Portuguese}-to-Spanish

{English, Spanish, Brazilian Portuguese}-to-French

{English, Spanish, French}-to-Brazilian Portuguese

Training sentences : 164K-200K (Different with languages)

Test set : incomplete
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Sentence No. Es Fr Ar En

1-200,000 �
200,001-400,000 �
400,001-600,000 �
600,001-800,000

Task
One-to-one

(En-to-target)
Multi-encoder

Mix. NMT 

Experts

{En, Fr, Pt(br)}-to-Es 24.32 26.01 (+1.69) 25.51 (+1.19)

{En, Es, Pt(br)}-to-Fr 24.54 25.62 (+1.08) 26.23 (+1.69)

{En, Es, Fr}-to-Pt(br) 25.14 27.36 (+2.22) 26.39 (+1.25)

3.  Future Work

BLEU by one-to-one and multi-source NMT

The additional use of incomplete corpora is beneficial in 

multi-source NMTs even if test data is incomplete

• The relation of the languages included in the 

multiple sources 

• The relation of the number of missing inputs

Multi-source NMT uses input in 

2+ languages to improve results.

Normally assumes that we have 

data in all of the languages 

Our method: Replace each missing input 

sentence with a special symbol <NULL>
Eso es verdad

C'est vrai That is true

<NULL>

Es

Ar

Fr En

Ex) Arabic input is missing

We can expect the system to 

basically ignore the <NULL> 

symbol and use the other 

sentences

Using an actual incomplete corpus

Condition
One-to-One Multi-

encoder

Mix. of NMT 

ExpertsEs-En Fr-En Ar-En

Complete (0.8M) 31.87 25.78 23.08 37.55 (+5.68) 33.28 (+1.41)

Complete (0.2M) 27.62 22.01 17.88 31.24 (+3.62) 32.16 (+4.54)

Pseudo-incomplete 

(0.8M)
30.98 25.62 22.02 36.43 (+5.45) 32.44 (+1.47)

BLEU by one-to-one and multi-source translation ({Es, Fr, Ar}-to-En})

The additional use of incomplete corpora with replacing 
missing sentence with <NULL> is beneficial
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Settings of the pseudo incomplete corpus

(� means that this part was deleted)

Problem

Many multilingual corpora are 

not complete
Existing studies on multi-

source translation did not 
explicitly handle this situation

Pseudo-incomplete (0.8M) > complete(0.2M) Multi-source > One-to-one

• We approach the problem that there are some missing input sentences on multi-source translation 

• We Examined a simple solution where missing inputs are replaced by a special symbol

• The experimental results with simulated (UN6WAY) and actual (TED Talks) incomplete multilingual corpora show 

that this method allows us to effectively use all available translations at both training and test time
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