Sentence classification based on phase patterns in EEG neural oscillation during imagined speech

調音動作想像時の脳波位相パターンを用いた文識別

Hiroki WATANABE, Hiroki TANAKA, Sakriani SAKTI, Satoshi NAKAMURA Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan Email: watanabe.hiroki.vx6@is.naist.jp

perception: listening task

imagined: imagined task

EEG

EEG phase

perception: fronto-central

imagined

0.05

0.03

0.02

Introduction

A big picture of our research Model Measuring Feature training EEG extraction ومندا المتبليل الماليد Estimation of How are you? speech speech imagination in the head How are you?

Previous research & research focus

classification of heard speech

- EEG-based sentence classification (Watanabe et al, 2017)
 - Utilizing a phase synchronization to sentence rhythms

classification of imagined speech

- vowel classification (DaSalla et al., 2009)
- syllable classification (D'zmura et al., 2009)
- word classification (Martin et al., 2015)
- sentence classification no research

Applying an EEG-based sentence classification method to imagined speech recognition

Research purposes

Investigating...

- (1) a phase synchronization during imaging articulatory movements of sentences
- (2) accuracies of EEG-based imagined sentence classification using the phase synchronization as features

Research questions Speech comprehension — speech rhythm (4-8Hz) — neural oscillation in STG (4-8Hz) phase synchronization speech rhythms - replicable oscillation patterns spoken sentence classification (Watanabe et al., 2017) Hypothesis: imagined speech phase synchronization b/w produced speech & neural oscillation in the motor area? If there is a synchronization, phase information is useful features for classification Research questions RQ. 1 Do EEG phase patterns during imagined speech synchronize with produced speech rhythms? RQ.2 How accurately do EEG phase patterns classify imagined sentences? EEG experiment Participant 1 male, 1 female (L1: Japanese) Speech material 1. あなたが昨日夢中で読んでいた本はおもしろかった。 (The book that you were absorbed in yesterday is interesting.) 2. ついさっき女の子が私に言ったことは本当の話。 (What the girl said to me just now is true.) 3. 向こうの壁に飾っているのは彼のお兄さんが描いた絵。 (The picture on the other wall was drawn by his older brother.) **Tasks** Indication of a task execution listening Ready? model speech is played speaking imitating model speech orally imaging imaging articulatory movement as the same rate to the speaking task 2.5 sec

Analysis pipeline • perception data: 35 trials (subj 01), 38 trials (subj 02)

perception: model

imagined: produced

speech data

39 trials (subj 01), 42 trials (subj 02) imagined data: Synchronization analysis

phase-locking value (PLV)

preprocess

bandpass-filter (1-14Hz)

Averaged across target channels

imagined: centro-parietal FFT decomposition • Phase extraction: [0, 2.8] sec, [2, 12] Hz

model training

feature

extraction

- Logistic regression
 Random forest
- Template matching SVM

evaluation Leave-one-out cross-validation

Result

perception

Synchronization analysis

Perception: stronger PLV in

fronto/ central region

stronger PLV in Imagined:

centro/parietal region

Classification analysis

Averaged PLV across two participants

percep: 57.9 % (logreg/template) imagine: **52.4** % (SVM)

subj 02

Conclusion & Future directions

RQ. 1 A tendency of phase synchronization b/w produced speech & EEG oscillations during imagined sentences

RQ. 2 Best accuracies: [52.4 59.0 %] by SVM.

Phase patterns are reliable features for imagined sentence recognition

Future directions: (1) Increasing number of participants +

(2) Source localization of this phase synchronization phenomenon

Selected references

2 sec

H. Luo and D. Poeppel. (2007) Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex, Neuron, vol.5, pp.1001–1010. M. D'Zmura, S. Deng, T.L.S. Thorpe, and R. Srinivasan. (2009) Toward EEG sensing of imagined speech, In Human-Computer Interaction. New Trends, Springer, Berlin, Heidelberg, pp.40–48.

H. Watanabe, H. Tanaka, S. Sakti, and S. Nakamura. (2017) Subject-independent classification of Japanese spoken sentences by multiple frequency bands phase pattern of

EEG response during speech perception, *In Proceedings of Interspeech*, Stockholm, Sweden, pp.2431–2435.

5.5 sec

C.S. DaSalla, H. Kambara, M. Sato, and Y. Koike. (2009) Single-trial classification of vowel speech imagery using common spatial patterns, Neural Networks, vol.22, no.9,

2.5 sec