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Abstract— We propose a method for the automatic detection
of mismatched feelings that occur in communication. As our
first step, we examined the semantically anomalous feelings
from EEGs when participants listened to spoken sentences.
Previous studies have shown that the event-related potentials
(ERP) of an electroencephalogram (EEG) are evoked in the
auditory and visual modalities where a semantic anomaly oc-
curs. We expand this knowledge and detect it from a single-trial
ERP using machine learning techniques. We recorded the brain
activity of eight participants as they listened to sentences that
contained semantic anomalies and found that a combination of
feature selection using linear discriminant analysis and linear
kernel support vector machines achieved the highest accuracy
that exceeded 60%. By applying this technique, we plan to
detect other types of anomalies in practical situations.

I. INTRODUCTION

In speech communication, we often recognize semantic
and syntactic errors, among other types, specifically in lan-
guage learners and machine output (e.g., machine translation
results). In traditional methods, evaluators directly ask ques-
tions to observe such perceived errors. However, since this
approach includes problems in which the evaluations of the
participants contain ambiguity and are time consuming and
cost ineffective, we propose a new method that automatically
detects such error (mismatched) feelings from biomedical
signals.

An electroencephalogram (EEG) is a non-invasive tool
that records the electrical activity of the human brain with
the electrodes placed along the scalp. Among types of EEG
measurements, event-related potential (ERP) is a measured
brain response that is a direct result of a specific sensory,
cognitive, or motor event. Since ERP generally has a low
signal/noise ratio in individual trials, many consecutive trials
are usually averaged to diminish the random noise.

Even though single-trial detection of ERP is challenging,
it is useful for applying the realtime assessments of the cog-
nitive states of users. Most previous works have shown that
P300 components, which have relatively high signal/noise
ratios, can be detected with around 50-70% accuracy using
several machine learning algorithms [1], [2]. Work-detecting
keyboard auto-correction errors from EEGs indicated that the
accuracy of single-trial detection was around 70% [3].
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A few studies have investigated the single-trial detection
of semantic anomalies. For example, Geuze et al., tried
single-trial detection of semantic priming, classifying visu-
ally presented related and unrelated words [4]. The semantic
anomaly was measured as an ERP of N400, which is a
well-known ERP component evoked in auditory and visual
modalities where semantic anomalies occur [5], [6]. N400 is
a phenomenon in which the potential shift in the negative
direction increases around the brain’s parietal region at 400
ms from the onset of the semantic anomalies. Because N400
is strongly influenced by background noise, artifacts, and
variations among trials, multiple times must be averaged.

In this study, we focus on the single-trial detection of
semantic anomalies while listening to spoken sentences. This
method can be applied to many practical situations such
as evaluating errors in automatic speech recognition (ASR),
spoken dialogue (SD) systems, and machine translation (MT)
as well as assessing people with autism spectrum disorders
[7] or those who show anomalies of semantic context sensi-
tivity [8].

We recorded EEG data while participants listened to
sentences with semantic anomalies and analyzed the N400
effects. In addition, we detected semantic anomalies from
single-trial EEGs with a technique that classified them from
multi electrodes/integration of time and spectral information
with machine learning as well as feature selection based on
linear discriminant analysis.

II. METHODS

A. Materials

Japanese semantic anomalies were manually created by
referring to Takezawa et al. [9]. We created a matched
number of semantically correct and incorrect sentences. The
following is an example of two types of sentences:

(semantic)

a. Taro-ga ryoko-ni dekake-ta
Taro-NOM a journey-DAT set out-PAST
Taro set out on a journey.

b. *Taro-ga jisho-ni dekake-ta
Taro-NOM a dictionary-DAT set out-PAST
Taro set out on a dictionary.

NOM: nominative case marker;
DAT: dative case marker;
PAST: past tense morpheme.
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Fig. 1. Cloze probability of hidden final words from semantically incorrect
sentences

Here an asterisk indicates semantically incorrect sen-
tences. Matched sentences corresponded in the first and third
phrases. The error is a selectional restriction between a verb
and its arguments. Due to speech stimulus, we controlled the
phonemes in the third phrase to begin with plosive sounds:
e.g., /t/, /k/, /d/.

A group comprised of the first author (A), the second
author (B), and a graduate student who did not join our
experiment (C) confirmed and corrected each sentence and
reached a consensus about whether a semantic anomaly
occurred. We selected from a total of 360 sentences as
follows: 40 semantically correct, 40 semantically incorrect,
40 syntactically correct, 40 syntactically incorrect1, and 40
fillers sentences (200 sentences in total). Here, fillers were
correct sentences used as dummy. We transcribed them into
text and recorded the speech naturally spoken by a female
professional narrator. The length of the audio file ranged
from 1.8 to 3.0 s. Persons A and C marked the synchronized
onset, which is the speech’s start position of the third phrases.

Moreover, we investigated the predictability of subsequent
words (cloze probability) that may affect amplitudes of
N400. 100 crowdsourcing workers from CrowdWorks were
given a list of 40 semantically incorrect sentences from
which the final word had been removed. They read the
sentences and filled the blanks at the position of the hidden
sentence-final words with the first word that popped into their
heads. After that, we manually calculated the cloze proba-
bility of the most frequently selected words. The distribution
of the cloze probability is shown in Fig. 1 (mean: 0.42, SD:
0.16, range: 0.15-0.85).

B. Participants

This experiment was approved by the research ethical
committee of the Nara Institute of Science and Technology.
Ten graduate students (nine males and one female) from the
Nara Institute of Science and Technology participated, all

1In this study, the double nominative case was syntactically anomalies.
We will investigate syntactic errors in the future.

of whom were native Japanese speakers, right-handed, and
without any history of psychiatric problems.

C. Procedure

The participants entered a soundproof room, sat on a chair,
and were instructed to look at the attention point on the mon-
itor and refrain from blinking and body movements as much
as possible. The following was the experimental procedure:
(1) watch the “+” mark for 1 s on the screen, (2) listen to one
randomly presented speech sound within 4 s, and (3) press
a key to determine whether each sound is correct Japanese
within 2 s. We conducted subjective evaluations to support
the attention of the participants and prepared practice trials
before the EEG recordings. All these steps were completed
within 25 minutes. For speech listening, insert earphones
(ER1) were used.

D. EEG Recording and Preprocessing

As an EEG cap, we used ActiCAP by Brain Products
with 32 ch and active electrodes and a BrainAmp DC from
the same company as an amplifier. For pre-processing the
recorded EEGs, we used EEGLAB [10] and ERPLAB [11]
as follows: (1) the recorded EEGs were downsampled to 250
Hz; (2) re-referencing was performed on the average of the
TP9 and TP10 electrodes; (3) independent component anal-
ysis was performed, and specific components were removed
using ADJUST [12]; (4) a two-pass IIR Butterworth filter
was applied through a high-pass filter of 0.1 Hz and a low-
pass filter of 30 Hz (filter order: 2, cutoff freq. (half-amp.): -6
dB); (5) for each trial condition (excluding fillers), epoching
was carried out at 200-800 ms of the synchronous onset.
Regarding the baseline corrections, the time before the onset
was specified; and (6) we finally applied the moving window
peak-to-peak elimination method (voltage threshold: 100 µV,
moving window full width: 200 ms, window step: 100 ms).
Since we had to remove two participants because of a high
noise ratio (more than half epochs were rejected), 24.8% of
the trials were rejected from subsequent analysis. We found
no effects of the number of rejected trials between semantic
correct and incorrect.

E. N400 Analysis

For each of the eight participants, we plotted the signal
average of the semantically correct/incorrect trials. We con-
firmed whether N400 was evoked and computed the grand
average of all the participants. Based on a previous study [6],
we calculated a statistical test of the mean amplitude values
at the Pz, Cz, and Fz electrodes in 350-500 ms. Assuming the
normality and the equal variance, a paired one-tailed t-test
was used. The significance level is 5%.

F. Feature Sets and Classifiers

Based on previous feature sets [6], we calculated the
average value of the 350-500 ms of the Pz, Cz, Fz electrodes
(time domain: Pz, Cz, Fz) and extracted the average value of
the amplitudes of 200-300 ms, 350-500 ms, and 500-750 ms
from all of the electrodes (93 of time domain). In addition,



Fig. 2. Grand average of all channels from all participants

Fig. 3. Grand average of Cz channel

we performed a fast Fourier transform on the waveform after
the onset and calculated the average value of the power
spectrum of θ (4-7 Hz), α (8-12 Hz), and β (13-28 Hz)
(93 of spectral domain).

As classifiers, we used a linear support vector machine
(SVM) and a random forest (RF), which is capable of non-
linear separation. We used the following parameters (SVM:

cost=1.0, RF: # of variables tried at each split: 13). We
performed 10-fold cross-validation to evaluate our model (we
split data into training and test sets).

In addition, we calculated the weight value (LDR: linear
discriminant ratio) from Fisher’s linear discriminant analysis
in the training set for the time and spectral features and
selected the top 20% of weighted features. By a binomial
test, we compared the chance rate (50.6%) and the model
that achieved the highest accuracy.

III. RESULTS

A. N400 Effects

Figure 2 plots the ground average at all the electrodes. The
potential shift to the negative around 400 ms can be observed
under the semantically incorrect condition over the parietal
region. Fig. 3 shows a plot of the Cz electrode. A difference
in the negative potential shift was confirmed around 400 ms
(highlighted in gray). All three channels were significantly
different: Fz (t(7)=3.07, p = 0.008), Pz (t(7)=3.29, p = 0.006),
and Cz (t(7) = 3.19, p = 0.007).

B. Single-trial Detection

Table I indicates the accuracy of the feature sets and the
classifiers. For the Pz, Cz, and Fz electrodes, the values of the



TABLE I
UNWEIGHTED ACCURACIES [%] OF FEATURE SETS AND CLASSIFIERS.

BEST MODEL IS INDICATED IN BOLD.

Feature SVM RF
Time domain (Pz, Cz, Fz) 54.43 46.23
Time domain 56.48 54.81
Spectral domain 53.97 55.23
Time and spectral domain 56.48 57.14
Time and spectral domain (LDR: > 80%) 60.67 59.62

accuracy were 54.43% (SVM) and 46.23% (RF). The time
and spectral domains slightly contributed to the accuracy.
The combination of the time and spectral domain improved
the accuracy to 57.14% (RF). Although there were no large
differences between the classifiers, feature selection based
on LDR was effective, achieving the highest accuracy of
60.67% (SVM), 59.62% (RF). Regarding this accuracy, we
confirmed a statistical difference compared to the chance rate
(p < 0.05). In a case study of the first two participants,
we found that a sentence with the highest cloze probability
(0.85) can be correctly predicted.

The LDR weights of the electrode in each time domain
are shown in Fig. 4, which represents selected features in
time domain. The 350-500 ms time areas and the parietal
region were highly weighted.

IV. DISCUSSION

A. N400 Analysis

In the Japanese language and semantically incorrect condi-
tion, we confirmed the N400 effects. One of this experiment’s
limitations is that semantically incorrect sentences were
limited to anomalies of selectional restrictions at the end
of sentences. Future work must consider the positions and
the types of anomalies. Also, to evaluate machine output, SD
and ASR errors, etc., we need to consider the effects of the
subjective evaluations obtained from behavior tasks.

B. Single-trial Detection

Our classification model achieved 60% detection accuracy
and outperformed the chance rate. Such accuracy resembles
previous related works [2], [3] although these works tried
to detect the P300 or error potentials. However, a detection
accuracy of 50-60 % still would not be suitable for detection
in practical situations. This result suggests that the feature
selection (top 20%) in the time and spectral domain was
effective, since maximum accuracy was obtained from the
linear SVM with feature selection. We also observed the
LDR weights in the time domain and the channel, and they
might be related to the brain’s parietal region that agrees
with previous N400 studies [6].

V. CONCLUSION AND FUTURE WORK

We detected semantic anomalies from a single-trial EEG
using a machine learning technique. We measured the EEGs
of eight participants while they listened to semantically
anomalous sentences and confirmed the N400 effects in the
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Fig. 4. Weighted time domain channel of LDR

parietal region. In addition, when using feature selection and
linear SVM, we achieved detection accuracy over 60%.

Future work will improve our model using [13], which we
previously proposed, as well as finding best parameters. We
will detect semantically anomalous feelings with a method
that doesn’t use an offline approach, such as independent
component analysis, for a realtime communication evalua-
tion. Automatic onset detection and technique of artificial
shifted trials are also needed for completely automated
anomalies detection.
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