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Background

Demand for conversation based seacrh

 Many users cannot clarify their “information-needs”

 Clarification of the requirement through interactions is important

 e.g. confirmation, asking for users “motivation” or “background”

How to model the dialogue strategy for clarification?

 Focus on the behaviour of human expert such as librarian
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Reference Interview

Reference Service

 Information navigation service in library

 Library users can ask the s at the librarian
for helping to find information

Reference Interview

 Structured interview for clarify the information-needs

 librarian works with the user to clarify their ambiguous needs

Improves the accuracy of information navigation
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[Ross et al. 2002]



Example of Reference Interview
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I'm having trouble finding the volumes

of postal mail throughout the 20th century

Yes

Ok, Let me see if I can find something

Can you tell me what you have done already? I found one site, about a week ago,

but I just realized it's more recent data

and the paper is for '20th century' history, 

so I want to try to focus on statisticsOK, let me look a little.... please hold

Do you think this page would help?

https://www.usps.com/cpim/pub100.htm

Wow, this is perfect!!

Thanks a lot

Hi, so you are trying to find some 

measure of the volume of mail sent 

through the US postal service

So, will that answer your question? 

question(ambiguous)

Confirm: type of information

feedback: yes

answer

confirm: search history

follow-up

feedback: search history

Feedback: positive

Yes thanks.

Bye.

Library UserUtterances: Librarian 

closing

https://www.usps.com/cpim/pub100.htm


Toward Modeling the Reference Interview

How do we model the dialogue strategy?

① Abstract of the utterance: e.g. dialogue act, dialogue state

 Tracking and predicting the speaker's intentions

② Modeling the dialogue strategy with reinforcement learning

 Understanding the dynamics of reference interview

 Imitate the librarian behaviors

③ Construct the response generation module

 Corresponds to each response action of librarian

 Toward the dialogue management

Focus the dialogue act classification task
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Available Corpus of Reference Interview

QuestionPoint Transcripts [Radford et al. 2011]

 QuestionPoint: chat based reference service

 600 dialogue sessions, 12634 utterances (preprocessed)

 Personal information are anonymized

Dialogue act tag in reference interview [Inoue 2013]

 Defined the two intent levels dialogue act

• Dialogue Act Function; DAF (5 class)

• Dialogue Act Domain; DAD (19 class)
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Dialogue Act in Reference Interview
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Table. 5 Class DA Categories (DAF) [Inoue 2013]



Dialogue Act in Reference Interview
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Table. 19 Class DA Categories (DAD) [Inoue 2013]



Problem of DA Classification

Supervised dialogue act (DA) classification

A problem existing DA classification approach

 Requires enough training data with labels

• Sparseness: Lack of training data for rare and unusual words

• It is critical in open-domain task such as reference interview
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We need handle OOVs



Subword Approach

Words can be divided into Subwords

 Can reduce OOVs

• Character-ngram

• Byte Pair Encoding, etc.
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[Gage et al. 1994, Sennrich et al. 2016]

Units Reduce OOVs Consideration of word structure

Word × ×

Characters ◎ ×

Character-ngram 〇 △

Byte Pair Encoding ◎ 〇

Table.  Variation of units for text tokenization



Byte Pair Encoding Compression
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Bottom-up character merging

 Recursively merges most frequent consecutive symbols 
into one symbol

 Starting point: character-level representation
 Hyper parameter:  when to stop the merge operation         

vocabulary size = number of merges + unique characters

 E.g. training data = {_low, _lowest, _newer, _wider}
 Start = {_ l o w, _ l o w e s t, _ n e w e r, _ w i d e r }
1. _ l → _l
2. _l o → _lo
3. _lo w → _low
4. e r → er

 Can segment the any text using 
merge operation rule

• e.g. _lowly

 Tokenized: _low｜l｜y



Solution

Handle OOVs & Build an better vocabulary units

 Apply the Byte Pair Encoding for subword tokenization 

• BPE is regarded as a domain-dependent feature extractor

Adaptation to neural dialogue act classification model

• Applied for a simple CNN-based classifier
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Target domain corpus
Chunk a with b
Chunk b with c
…

Merge rule for tokenization

Domain adaption of Subword tokenizer

[BPE compression]

Parameter: 
number of merge operation 



Diagram of Proposed Method
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Byte Pair Encoding CNN



CNN based DA Classifier

BPE-Unit-Level Convolutional Neural Network

 Embedding Layer

• Convert one-hot BPE vector to dense vector

 1D Convolution layer

 Global Max-Pooling Layer
• pool size = input length

Character vs. word vs. Subword (BPE-Unit)
• Comparison with a simple model

• Adapt the simple CNN
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Figure. The Input Generation to CNN



Experimental Setup

Dataset: QuestionPoint transcripts

• Labeled 5,327 utterances, unlabeled 7, 307 utterances

Evaluation

• Predict the 5 class & 19 class DA categories [Inoue 2013]

• 10-fold cross validation with paired t-test (5,327 utterances)
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Unlabeled 
Corpus

BPE
Tokenizer

Training

labeled 
Train Corpus

Tokenized 
Train Corpus

Tokenize

DA 
Classifier

Training

Domain adaptation



Comparison

DA classifiers

Baseline features of RF & MLP
• Basic: bag-of-words (BoW), bag-of-bigrams (BoW)

• Additional : speaker, length of tokenized utterance, order of utterance
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Method Unit

BPE-Unit-Level CNN BPE-Unit

Character-Level CNN Character

Word-Level CNN Word

Word-Level LSTM Word

MLP Word

MLP w/o addition Word

RF Word

RF w/o additional Word



Statistics of BPE Tokenization
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Number of characters per token Length of tokenized  utterances

Vocabulary size of BPE Vocabulary size of BPE

Average number of OOVs
 Word-Unit
• 334 OOVs

 Character & BPE-Unit
• Less OOVs (< 2)



BEP-Unit Level CNN ＞Character-Level CNN ＞＞Word-Level CNN

Experimental Results
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Method DAF (5 class) DAD (19 class)

BPE-Unit-Level CNN (v=200) 0.8684 *** 0.7256 *

Character-Level CNN 0.8538 0.7124

Word-Level CNN 0.8438 0.6937

Word-Level LSTM 0.8286 0.6745

MLP 0.8515 0.7145

MLP w/o additional 0.8498 0.7119

RF 0.8367 0.7008

RF w/o additional 0.8292 0.6790

＊ p < 0.05＊＊ p < 0.01＊＊＊ p < 0.001：Comparison with MLP

best of baselines



DAF (5 class) results

Results of Several BPE Settings

182018©Seiya KAWANO   AHC-Lab, IS, NAIST

Char-CNN (0.8538)

Word-CNN (0.8438)

MLP (0.8515)

*

***

*** **

**
**

＊ p < 0.05＊＊ p < 0.01＊＊＊ p < 0.001：Comparison with MLP

MLP (0.8498)
w/o additional



DAF (19 class) results

Results of Several BPE Settings
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Char-CNN (0.7124)

Word-CNN (0.6937)

MLP (0.7145)

*
*

＊ p < 0.05＊＊ p < 0.01＊＊＊ p < 0.001：Comparison with MLP

MLP (0.7119)
w/o additional



Conclusion

We proposed dialogue act classification model in  refer-
ence interview using CNN with Byte Pair Encoding

 Achieved the best performance without complicated feature 
engineering and additional features

CNN with Character vs. word vs. Subword (BPE-Unit)

 BPE-Unit > Character >> Word

 BPE-Unit-Level CNN improved accuracy than Character-Level CNN

 Possibility of eliminating sparseness & acquiring the better unit
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Future work

More Improve the dialogue act classification model

 Automatic parameter decision in BPE

 Combining some additional information (e.g. dialogue history)

Improve the current annotation scheme

 e.g. apply the ISO-24617-2 [Bunt et al. 2013, Yoshino et al. 2018]

 Define the dialogue state for the reference interview

Apply the reinforcement learning

 Understanding unknown reward structure in a reference interview

• E.g. Inverse reinforcement learning (IRL)
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End Slide.



Example of BPE Tokenization

e.g. 
we need simple explanations for the nervous and lymphatic system .

 Vocabulary size= 100
_we _n e ed ▁s i m p le ▁ e x p l an tion s ▁for ▁the ▁n er v o u s ▁and ▁l y m p h a t i
c ▁s y st e m .

 Vocabulary size = 500
▁we ▁need ▁s i m p le ▁ex pl an tion s ▁for ▁the ▁n er v o us ▁and ▁ly m p h at ic
▁system .

 Vocabulary size = 1000
▁we ▁need ▁simple ▁ex pl an tion s ▁for ▁the ▁ne r v o us ▁and ▁ly m pha tic
▁system .
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Input Generation to CNN
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Figure. The Input Generation to CNN

Set the optimal parameter
1. Max length of segmentation
2. Number of filters
3. Kernel size of convolution
4. Stride length of convolution

Text Tokenization: BPE or Character or Word


