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ABSTRACT

Despite the success of sequence-to-sequence approaches in auto-
matic speech recognition (ASR) systems, the models still suffer from
several problems, mainly due to the mismatch between the train-
ing and inference conditions. In the sequence-to-sequence archi-
tecture, the model is trained to predict the grapheme of the cur-
rent time-step given the input of speech signal and the ground-truth
grapheme history of the previous time-steps. However, it remains
unclear how well the model approximates real-world speech dur-
ing inference. Thus, generating the whole transcription from scratch
based on previous predictions is complicated and errors can propa-
gate over time. Furthermore, the model is optimized to maximize
the likelihood of training data instead of error rate evaluation met-
rics that actually quantify recognition quality. This paper presents
an alternative strategy for training sequence-to-sequence ASR mod-
els by adopting the idea of reinforcement learning (RL). Unlike the
standard training scheme with maximum likelihood estimation, our
proposed approach utilizes the policy gradient algorithm. We can (1)
sample the whole transcription based on the model’s prediction in the
training process and (2) directly optimize the model with negative
Levenshtein distance as the reward. Experimental results demon-
strate that we significantly improved the performance compared to a
model trained only with maximum likelihood estimation.

Index Terms— End-to-end speech recognition, reinforcement
learning, policy gradient optimization

1. INTRODUCTION
Sequence-to-sequence models have been recently shown to be very
effective for many tasks such as machine translation [1, 2], image
captioning [3, 4], and speech recognition [5]. With these models,
we are able to learn a direct mapping between the variable-length
of the source and the target sequences that are often not known
apriori using only a single neural network architecture. This way,
many complicated hand-engineered models can also be simplified
by letting DNNs find their way to map from input to output spaces
[5, 6, 7]. Therefore, we can eliminate the need to construct separate
components, i.e., a feature extractor, an acoustic model, a lexicon
model, or a language model, as is commonly required in conven-
tional ASR systems such as hidden Markov model-Gaussian mixture
model (HMM-GMM)-based or hybrid HMM-DNN.

A generic sequence-to-sequence model commonly consists of
three modules: (1) an encoder module for representing source data
information, (2) a decoder module for generating transcription out-
put and (3) an attention module for extracting related information
from an encoder representation based on the current decoder state.
A decoding scheme was done based on a left-to-right decoding pro-
cedure. In the training stage, given the current input of the speech

signal, the decoder produces a grapheme in the current time-step
with maximal probability conditioned on the ground-truth of the
grapheme history in the previous time-steps. This training scheme is
usually referred as a teacher-forcing method [8]. However, in the
inference stage, since the ground-truth of the transcription is not
known, the model must produce the grapheme in the current time-
step based on an approximation of the correct grapheme in previous
time-steps. Therefore, an incorrect decision in an earlier time-step
may propagate through subsequent time-steps.

Another drawback is the differences in the use of objective func-
tions between training and evaluation schemes. In the training stage,
the model is mostly optimized by combining the teacher-forcing ap-
proach with the maximum likelihood estimation (MLE) for each
frame. On the other hand, the recognition accuracy is evaluated by
calculating the minimum string edit-distance (Levenshtein distance)
between the correct transcription and the recognition output. Such
differences may result in suboptimal performance [9]. Optimizing
the model parameter with the appropriate objective function is cru-
cial to achieve good model performance, or in other words, direct
optimization with respect to the evaluation metrics might be neces-
sary.

In this paper, we propose an alternative strategy for training a
sequence-to-sequence ASR by adopting an idea from RL. Specifi-
cally, we utilize a policy gradient algorithm (REINFORCE) [10] to
simultaneously alleviate both of the above problems. By treating our
decoder as a policy network or an agent, we are able to (1) sample the
whole transcription based on model’s prediction in the training pro-
cess and (2) directly optimize the model with negative Levenshtein
distance as the reward. Our model thus integrates the power of the
sequence-to-sequence approach to learn the mapping between the
speech signal and the text transcription based on the strength of re-
inforcement learning to optimize the model with ASR performance
metric directly.

2. SEQUENCE-TO-SEQUENCE ASR

Sequence-to-sequence model is a type of neural network model
that directly models conditional probability P (y|x), where x =
[x1, ..., xS ] is the source sequence with length S, and y = [y1, ..., yT ]
is the target sequence with length T . Most common input x is a se-
quence of feature vectors like Mel-spectral filterbank and/or MFCC.
Therefore, x ∈ RS×F where F is the number of features and S is
the total frame length for an utterance. Output y, which is a speech
transcription sequence, can be either a phoneme or a grapheme
(character) sequence.

Figure 1 shows the overall structure of the attention-based
encoder-decoder model that consists of encoder, decoder, and at-
tention modules. The encoder task processes input sequence x
and outputs representative information hE = [hE1 , ..., h

E
S ] for the



Fig. 1. Attention-based encoder-decoder architecture.

decoder. The attention module is an extension scheme that helps
the decoder find relevant information on the encoder side based on
current decoder hidden states [2]. An attention module produces
context information ct at time t based on the encoder and decoder
hidden states with following equation:

ct =

S∑
s=1

at(s) ∗ hEs (1)

at(s) = Align(hEs , h
D
t ) =

exp(Score(hEs , h
D
t ))∑S

s=1 exp(Score(hEs , h
D
t ))

. (2)

There are several variations for the score functions:

Score(hEs , h
D
t ) =


〈hEs , hDt 〉, dot product
hEᵀ
s Wsh

D
t , bilinear

V ᵀ
s tanh(Ws[h

E
s , h

D
t ]), MLP

(3)

where Score : (RM × RN ) → R, M is the number of hidden units
for the encoder and N is the number of hidden units for the decoder.
Finally, the decoder task, which predicts the target sequence proba-
bility at time t based on the previous output and context information
ct can be formulated:

logP (y|x; θ) =

T∑
t=1

logP (yt|hDt , ct; θ) (4)

where hDt is the last decoder layer that contains summarized infor-
mation from all previous input y<t and θ is our model parameters.

3. SEQUENCE-TO-SEQUENCE OPTIMIZATION WITH
REINFORCEMENT LEARNING

In this section, we introduce our proposed approach that integrates
policy optimization with the standard encoder-decoder ASR model.
We start by describing the policy gradient method and followed by
the reward construction for our ASR agent.

3.1. Policy Gradient
Policy gradient is a type of reinforcement learning algorithm for op-
timizing the expected rewards with respect to the parameterized pol-
icy [11]. To apply the idea from the policy gradient method, we
need to establish a connection between our ASR model and the re-
inforcement learning formulation. For reinforcement learning, we
reformulate our system as a Markov Decision Process (MDP) =
(S,A, T ,R), where S is the state space, A is the set of possible
actions, T is the transition probability, andR is the reward function.

Here, our task is to generate a text transcription given the input
speech waveform, and the encoder-decoder neural network (Section
2) will act as an agent. For each time-step t = 1, 2, 3..., T , we can
define state st ∈ S as st = [hDt , ct], which is the concatenation be-
tween the decoder hidden state and the context information at time
t. Action at ∈ A equals at = yt, where action space A contains all
possible grapheme + end of sentence “eos” symbols in our dataset.
Reward function R for our ASR task will be explained later in Sec-
tion 3.2.

Given a pair of speech and transcription (x(n),y(n)) at n-th
index, R(n) is the reward for transcription y compared to ground-
truth y(n). Our optimization target is to maximize expected re-
wardEy[R(n)|πθ] with respect to θ as our neural network parameter
where πθ(at|st) = P (yt|hD(n)

t , c
(n)
t ; θ) = P (yt|y<t,x(n); θ). To

use the first-order optimization method (e.g., stochastic gradient as-
cent / descent), we need to calculate the gradient from the expected
rewards:

∇θEy

[
R(n)|πθ

]
= ∇θ

∫
P (y|x(n); θ)R(n) dy

=

∫
∇θP (y|x(n); θ)R(n) dy

=

∫
P (y|x(n); θ)∇θ logP (y|x(n); θ)R(n) dy

= Ey

[
∇θ logP (y|x(n); θ)R(n)

]
. (5)

In Eq. 5, we derived a similar equation with the gradient from the
Minimum Risk Training objective [12]. However, instead of us-
ing only final reward R(n) and distribute it equally to every time-
step, we replace the R(n) with the time-distributed reward R(n)

t =∑T
i=t γ

i−tr
(n)
i and provide more informative reward for each time-

step on every sample. Therefore, we replace Eq. 5 to use utilize
temporal structure t = [1, .., T ]:

∇θEy

[
T∑
t=1

r
(n)
t |πθ

]

= Ey

[
T∑
t=1

r
(n)
t

T∑
t=1

∇θ logP (yt|y<t,x(n); θ)

]

≈ Ey

[
T∑
t=1

R
(n)
t ∇θ logP (yt|y<t,x(n); θ)

]
(6)

≈ 1

M

M∑
m=1

T (m)∑
t=1

R
(n,m)
t ∇θ logP (y

(n,m)
t |y(n,m)

<t ,x(n); θ) (7)

where T is the length of transcription y, R(n)
t =

∑T
i=t γ

i−tr
(n)
i

is the generalized equation for accumulated future reward based on
the current state and action at time-t, and γ is the discount factor
to reduce the effect of future rewards. For Eq. 7, R(n,m)

t is the



Fig. 2. Comparison between teacher-forcing and policy gradient
training processes. In the training stage, teacher-forcing set the
model to be conditioned on the ground-truth from the dataset. Mean-
while, policy gradient method set the model to be conditioned on its
own prediction from previous time-step to predicts the current time-
step output probability.

reward for the m-th sample based on the n-th utterance and time-
step t and T (m) is the length of sample y(n,m). In the real world,
it is impractical to integrate all possible transcription y to calcu-
late the gradient of the expected reward in Eq. 6. Therefore, we
utilize Monte Carlo sampling to sample M transcription sequence
y(n,m) ∼ P (y|x(n); θ) from our model to calculate the gradient
with empirical expectation in Eq. 7.

Since the REINFORCE gradient estimator is usually too noisy
and might hinder our learning process, there are several tricks to
reduce the variance [13, 14]. In this paper, we normalize reward
Rt = (Rt−µt)

σt
where µt and σt are the moving average and standard

deviation for time-step t. For the final-reward R(n) in Eq. 5, we
normalize the reward across M samples.

To summarize our explanation, we provide an illustration in
Fig. 2 that compares the difference between teacher-forcing and pol-
icy gradient method for training the sequence-to-sequence model.
Teacher-forcing is optimized by trying to maximize MLE objective
function:

MLE(y
(n)
t , p(yt)) =

∑
c

1{y(n)t = c} ∗ log p(yt = c), (8)

which is calculated per time-step based on ground-truth label y(n)t .
In the policy gradient, first we sampleM sequences via Monte Carlo

sampling and stop after we get an “eos” symbol. Then we calculate
discounted reward R(n,m)

t for each time-step based on the future
rewards.

3.2. Reward Construction for ASR Tasks
Most ASR systems are evaluated based on edit-distance or the Lev-
enshtein distance algorithm. Therefore, we also construct our reward
functionR(y,y(n), t) to calculate r(n)t by utilizing the edit-distance
algorithm. We define reward r(n)t as

r
(n)
t =

{
−(ED(y1:t,y

(n))− ED(y1:t−1,y
(n))) if t > 1

−(ED(y1:t,y
(n))− |y(n)|) if t = 1

where ED(·, ·) is the edit-distance function between two transcrip-
tions, y1:t is the substring of y from index 1 to t, and |y(n)| is the
ground-truth length. Intuitively, we try to calculate whether the cur-
rent new transcription at time-t decreases the edit-distance compared
to previous transcription, and we multiply it by -1 for a positive re-
ward if our new edit-distance at time t is smaller than the previous
t− 1 edit distance.

4. EXPERIMENT
4.1. Speech Dataset and Feature Extraction
In this study, we investigated the performance of our proposed
method on WSJ [15] with identical definitions of training, develop-
ment, and test sets as the Kaldi s5 recipe [16]. We separated WSJ
into two experiments using WSJ-SI84 only and WSJ-SI284 data for
training. We used dev 93 for our validation set and eval 92 for our
test set. We used the character sequence as our decoder target and
followed the preprocessing steps proposed by [17]. The text from
all the utterances was mapped into a 32-character set: 26 (a-z) let-
ters of the alphabet, apostrophes, periods, dashes, space, noise, and
“eos”. In all experiments, we extracted the 40 dims + ∆ + ∆∆ (total
120 dimensions) log Mel-spectrogram features from our speech and
normalized every dimension into zero mean and unit variance.

4.2. Model Architecture
On the encoder side, we fed our input features into a linear layer
with 512 hidden units followed by the LeakyReLU [18] activation
function. We used three bidirectional LSTMs (Bi-LSTM) for our
encoder with 256 hidden units for each LSTM (total 512 hidden units
for Bi-LSTM). To improve the running time and reduce the memory
consumption, we used hierarchical subsampling [19, 5] on the top
two Bi-LSTM layers and reduced the number of encoder time-steps
by a factor of 4.

On the decoder side, we used a 128-dimensional embedding ma-
trix to transform the input graphemes into a continuous vector, fol-
lowed by one-unidirectional LSTMs with 512 hidden units. For our
scorer function inside the attention module, we used MLP scorers
(Eq. 3) with 256 hidden units and Adam [20] optimizer with a learn-
ing rate of 5e−4.

In the training phase, we started to train our model with MLE
(Eq. 8) until convergence. After that, we continued training by
adding an RL-based objective until our model stopped improving.
For our RL-based objective, we tried four scenarios using differ-
ent discount factors γ = {0, 0.5, 0.95} and only global reward R
(Eq. 5). To calculate the gradient based on Eq. 7, we sampled up to
M = 15 sequences for each utterance.

In the decoding phase, we extracted our transcription with a
beam search strategy (beam size = 5) and normalized log-likelihood



logP (Y|X; θ) by dividing it by the transcription length to prevent
the decoder from favoring shorter transcriptions. We did not use any
language model or lexicon dictionary in this work. All of our models
were implemented on the PyTorch framework1.

5. RESULTS AND DISCUSSION

Table 1. Character error rate (CER) result from baseline and pro-
posed models on WSJ-SI84 and WSJ-SI284 datasets. All results
were produced without a language model or lexicon dictionary.

Models Results
WSJ-SI84 CER (%)

MLE
CTC [21] 20.34 %
Att Enc-Dec Content [21] 20.06 %
Att Enc-Dec Location [21] 17.01 %
Joint CTC+Att (MTL) [21] 14.53 %
Att Enc-Dec (ours) 17.68 %

MLE + RL
Att Enc-Dec + RL
(final reward R) 15.46 %

Att Enc-Dec + RL
(time reward Rt, γ = 0) 15.99 %

Att Enc-Dec + RL
(time reward Rt, γ = 0.5) 15.05 %

Att Enc-Dec + RL
(time reward Rt, γ = 0.95) 13.90 %

WSJ-SI284 CER (%)
MLE

CTC [21] 8.97%
Att Enc-Dec Content [21] 11.08%
Att Enc-Dec Location [21] 8.17%
Joint CTC+Att (MTL) [21] 7.36%
Att Enc-Dec (ours) 7.69%

MLE+RL
Att Enc-Dec + RL
(final reward R) 7.26 %

Att Enc-Dec + RL
(time reward Rt, γ = 0) 6.64 %

Att Enc-Dec + RL
(time reward Rt, γ = 0.5) 6.37 %

Att Enc-Dec + RL
(time reward Rt, γ = 0.95) 6.10 %

Table 1 shows all the experiment results from the WSJ-SI84 and
WSJ-SI284 datasets. We compared our results with several pub-
lished models such as CTC, Attention Encoder-Decoder and Joint
CTC-Attention model trained with MLE objective. We also created
our own baseline model with Attention Encoder-Decoder and trained
only with MLE objective. The difference between our Attention
Encoder-Decoder (“Att Enc-Dec (ours)”) is our decoder calculate
the attention probability and context vector based on current hidden
state instead of previous hidden state. We also reused the previous
context vector by concatenating it with the input embedding vector.

We explore several configurations by only using final reward R
and time distributed reward Rt with different γ = [0, 0.5, 0.95] val-
ues. Our result shows that with by combining the teacher forcing
with policy gradient approach improved our model performance sig-

1PyTorch https://github.com/pytorch/pytorch/

nificantly compared to a system just trained with the teacher forc-
ing method only. Furthermore, we also found that discount factor
γ = 0.95 give the best performance on both datasets.

6. RELATED WORK

Reinforcement learning is a subfield of machine learning that creates
an agent that interacts with its environment and learn how to maxi-
mize the rewards using some feedback signal. Many reinforcement
learning applications exist, including building an agent that can learn
how to play a game without any explicit knowledge [22, 23], control
tasks in robotics [24], and dialogue system agents [25, 26].

Not only limited to these areas, reinforcement learning has also
been adopted for improving sequence-based neural network models.
Ranzato et al. [27] proposed an idea that combined REINFORCE
with an MLE objective for training called MIXER. In the early stage
of training, the first s steps are trained with MLE and the remain-
ing T − s steps with REINFORCE. They decrease s as the training
progress over time. By using REINFORCE, they trained the model
using non-differentiable task-related rewards (e.g., BLEU for ma-
chine translation). In this paper, we did not need to deal with any
scheduling or mix any sampling with teacher forcing ground-truth.
Furthermore, MIXER did not sample multiple sequences based on
the REINFORCE Monte Carlo approximation and they were not in-
vestigate MIXER on an ASR system.

In a machine translation task, Shen et al. [12] improved the neu-
ral machine translation (NMT) model using Minimum Risk Training
(MRT). Google NMT [9] system combined MLE and MRT objec-
tives to achieve better results. For ASR task, Shanon et al. [28]
performed WER optimization by sampling paths from the lattices
used during sMBR training which might be similar to REINFORCE
algorithm. But, the work was only applied on CTC-based model.
From the probabilistic perspective, MRT formulation resembles the
expected reward formulation used in reinforcement learning. Here,
MRT formulation equally distribute the sentence-level loss into all
of the time-steps in the sample.

In contrast, we applied the RL strategy to an ASR task and
found that using final reward R is not an effective method for train-
ing our system because the loss diverged and produced a worse re-
sult. Therefore, we proposed a temporal structure and applied time-
distributed rewardRt. Our results demonstrate that we improved our
performance significantly compared to the baseline system.

7. CONCLUSION

We introduced an alternative strategy for training sequence-to-
sequence ASR models by integrating the idea from reinforcement
learning. Our proposed method integrates the power of sequence-
to-sequence approaches to learn the mapping between speech signal
and text transcription based on the strength of reinforcement learning
to optimize the model with ASR performance metric directly. We
also explored several different scenarios for training with RL-based
objective. Our results show that by combining RL-based objective
together with MLE objective, we significantly improved our model
performance compared to the model just trained with the MLE ob-
jective. The best system achieved up to 6.10% CER in WSJ-SI284
using time-distributed reward settings and discount factor γ = 0.95.
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