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Abstract

Most attention mechanism in sequence-to-sequence model is based on a global
attention property which requires a computation of a weighted summarization of
the whole input sequence generated by encoder states. However, it is computa-
tionally expensive and often produces misalignment on the longer input sequence.
Furthermore, it does not fit with monotonous or left-to-right nature in speech
recognition task. In this paper, we propose a novel attention mechanism that has
local and monotonic properties. Various ways to control those properties are also
explored. Experimental results demonstrate that encoder-decoder based ASR with
local monotonic attention could achieve significant performance improvements
and reduce the computational complexity in comparison with the one that used the
standard global attention architecture.

1 Introduction
Recently, end-to-end ASR based model approach allows the model to directly learn the mapping
between variable-length speech to text [Chorowski et al., 2014, Chan et al., 2016]. It allow us to
replaces the conventional ASR component such as a acoustic model, a pronunciation lexicon, and a
language model, into a single integrated neural network. There are three main modules for end-to-end
training for sequence-to-sequence task: (1) Encoder module which represent source information,
(2) Decoder module which produces output sequence, (3) Attention module which help decoder to
extract related information from encoder representation.

However, mostly these attention module used today has a “global" property [Bahdanau et al., 2014,
Luong et al., 2015]. Every time the decoder needs to predict the output given the previous output, it
must compute a weighted summarization of the whole input sequence generated by the encoder states.
However, although the global attention mechanism has often improved performance in some tasks, it
is very computationally expensive. Furthermore, global attention does not fit with monotonous or
left-to-right natures in speech recognition tasks and focus on the audio’s specific timing. Therefore,
the attention needs two important characteristics to address these problems: local and monotonicity
properties. The local property helps our attention module focus on certain parts that the decoder
wants to transcribe, and the monotonicity property strictly generates alignment left-to-right from
beginning to the end of speech.

In this paper, we propose a novel attention module that has local and monotonicity properties1.
We explore various ways to control these properties on the attention-based encoder-decoder model.
Experimental results demonstrate that an encoder-decoder based ASR with local monotonic attention
significantly improved performance and reduced the computational complexity more than one that
used the standard global attention architecture.

1The long version of this paper with title "Local Monotonic Attention Mechanism for End-to-End Speech and
Language Processing" has been accepted at 8th International Joint Conference on Natural Language Processing
(IJCNLP) 2017

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



Figure 1: Local monotonic attention.

2 Attention-based Encoder Decoder Neural Network
The encoder-decoder model is a neural network that directly models conditional probability p(y|x),
where x = [x1, ..., xS ] is the source sequence with length S and y = [y1, ..., yT ] is the target sequence
with length T . The encoder task processes input sequence x and outputs representative information
he = [he

1, ..., h
e
S ] for the decoder. The attention module produces context information ct at the time t

based on the encoder and decoder hidden states:

ct =

S∑
s=1

at(s) ∗ he
s where at(s) = Align(he

s, h
d
t ) =

exp(Score(he
s, h

d
t ))∑S

s=1 exp(Score(he
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There are several variations for score functions:
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where Score : (RM × RN)→ R, M is the number of hidden units for encoder and N is the number of
hidden units for decoder. Finally, the decoder task, which predicts the target sequence probability
at time t based on previous output and context information ct can be formulated log p(y|x) =∑T

t=1 log p(yt |y<t, ct).

3 Locality and Monotonicity Properties
Figure 1 illustrates the overall mechanism of our proposed local monotonic attention, and details are
described blow.

1. Monotonicity-based Prediction of Central Position
First, we define how to predict the next central position of the alignment illustrated in Part
(1) of Figure 1. Assume we have source sequence with length S , represented by S encoded
states he = [he

1, ..., h
e
S ]. At time t, we want to decode the t-th target output given the source

sequence, yt−1, and current decoder states hd
t . In standard approaches, we use hidden states

hd
t to predict the position difference ∆pt with a multilayer perceptron (MLP). We use variable

∆pt to determine how far we should move the center of the alignment compared to previous
center pt−1.
In this paper, we propose two different formulations for estimating ∆pt:
• Constrained position prediction:

We limit maximum range from ∆pt with hyperparameter Cmax with the following
equation:

∆pt = Cmax ∗ sigmoid(Vᵀp tanh(Wphd
t )) (3)

However, it requires us to handle hyperparameter Cmax.

• Unconstrained position prediction:
Compared to a previous formulation, since we do not limit the maximum range of ∆pt,
here we can ignore hyperparameter Cmax and use exponential (exp) function instead of
sigmoid. We formulate unconstrained position prediction with following equation:

∆pt = exp(Vᵀp tanh(Wphd
t )) (4)
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Both equations guarantee monotonicity properties since ∀t ∈ [1..T ], pt ≥ (pt−1 + ∆pt).
Additionally, we also used scaling variable λt to scale the unnormalized Gaussian distribution
that depends on ht. The main objective of this step is to generate a scaled Gaussian
distribution aNt in Eq.5.

aNt (s) = λt ∗ exp
(
−

(s − pt)2

2σ2

)
. (5)

where pt is the mean and σ is the standard deviation. In this paper, we treat σ as a
hyperparameter.

2. Locality-based Alignment Generation
After calculating new position pt, we generate locality-based alignment, as shown in Part
(2) of Figure 1.Here, we just need calculate the scores (Eq. 2) and generate alignment aSt
only within [pt − 2σ, pt + 2σ]:

aSt (s) = Align(he
s, h

d
t ), ∀s ∈ [pt − 2σ, pt + 2σ]. (6)

Compared to the standard global attention, we can reduce the decoding computational
complexity O(T ∗ S ) into O(T ∗σ) where σ � S and σ is constant, T is total decoding step,
S is the length of the encoder states.

3. Context Calculation
In the last step, we calculate context ct with alignments aNt and aSt , as shown in Part (3) of
Figure 1:

ct =

(pt+2σ)∑
s=(pt−2σ)

(
aNt (s) ∗ aSt (s)

)
∗ he

s (7)

Context ct and current hidden state hd
t will later be utilized

Overall, we can rephrase the first step as generating “prior" probabilities aNt based on the previous pt−1
position and the current decoder states. Then the second step task generates “likelihood" probabilities
aSt by measuring the relevance of our encoder states with the current decoder states. In the third step,
we combine our “prior" and “likelihood" probability into an unnormalized “posterior" probability at
and calculate expected context ct. for calculating current output yt. For more detailed explanation,
please refer to the long version of our paper Tjandra et al. [2017]2.

4 Experiment and Result Discussion

We conducted our experiments on the TIMIT [Garofolo et al., 1993] dataset with the same set-up
for training, development, and test sets as defined in the Kaldi s5 recipe [Povey et al., 2011]. We
used 40-dimensional fbank as the speech features and 39 phoneme class for our target. On the
encoder sides, we used a linear layer followed by three Bi-LSTM with 512 hidden units. We reduced
the source sequence length by a factor of 4 with subsampling. On the decoder sides, we used two
LSTMs with 512 hidden units. Hyperparameter σ was set to 1.5, and Cmax for constrained position
prediction (see Eq. 3) was set to 5. Both hyperparameters were empirically selected and generally
gave consistent results across various settings in our proposed model. In the recognition phase, we
generated transcriptions with best-1 (greedy) search from the decoder. We did not use any language
model in this work to rescore our transcription result.

2https://arxiv.org/abs/1705.08091
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Table 1: Result from baseline and proposed models on TIMIT.

Model Test
PER (%)

Global Attention Model (Baseline)
Att Enc-Dec [Pereyra et al., 2017] 23.2
Att Enc-Dec [Luo et al., 2016] 24.5
Att Enc-Dec with MLP Scorer (Our baseline) 23.8

Local Attention Model (Proposed)
Monotonicity Locality Test

Pos Prediction
∆pt

Alignment
Score(he

s, h
d
t )

Function
Type PER (%)

Const (sigmoid) No - 23.2
Const (sigmoid) Yes Bilinear 21.9
Const (sigmoid) Yes MLP 21.7
Unconst (exp) No - 23.1
Unconst (exp) Yes Bilinear 20.9
Unconst (exp) Yes MLP 21.4

In Table 1, we summarizes the experiments on our proposed local attention models and compares
them to the baseline model using several possible scenarios. We found that it is more beneficial to
use the unconstrained position prediction formulation since it gives better performance and we do
not need to handle the additional hyperparameter Cmax. We also found out that the scorer function
is essential for our proposed models. Overall, our proposed encoder-decoder model significantly
improved the performance and reduced the computational complexity in comparison with one that
used standard global attention mechanism. The best performance achieved by our proposed model
with unconstrained position prediction and bilinear scorer, and provided 12.2% relative error rate
reduction to our baseline.

5 Related Works

Aharoni and Goldberg [2016] proposed a monotonic attention by introducing an additional step
symbol to control the latest attention position. However, they need the complete target alignment to
train the model. Compared to our approach, we do not require any explicit alignment. Raffel et al.
[2017] also proposed a method for producing a monotonic alignment by using Bernoulli random
variable to control when the attention mechanism should stop and generate output. Compare to our
proposed method, we did not restrict the area of the attention window. In the other hand, it is also
possible to combine their method with ours to predict the central position pt location.

6 Conclusion
This paper demonstrated a novel attention mechanism for encoder decode model that ensures mono-
tonicity and locality properties. We explored various ways to control these properties, including
monotonicity-based position prediction and locality-based alignment generation. We test our pro-
posed model with speech recognition task. Our result revealed that we significantly improved the
performance and reduced the computational complexity more than one that used standard global
attention architecture.
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