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Research motivation
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Developing a brain computer interface (BCI) for communication
 Communication prosthesis for locked-in syndrome patients
 For real-time speech communication without body movement

 Electrocorticography(ECoG)-
based real-time vowel 
synthesizer (Guenther et al., 2009)

BCI for online speech communication

 EEG(Electroencephalography)-
based BCI to convey speech in 
real time

Our goal 

- based on invasive method
- Higher accuracy

- EEG-based:  
- Relatively low cost + Compact
- Non-invasive method

- But, difficult task
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 Non-invasive neural decoding of speech (EEG/ MEG)
 Imagined speech recognition
 2 English words (Salama et al., 2014)

 2 English syllables (D’Zmura et al., 2009)

 2 Japanese vowels (DaSalla et al., 2009)

 Heard speech recognition 
 3 English sentences (Luo & Poeppel, 2007, etc)

 5 English words (Chan et al., 2011), 2 English words (Correia et al., 2015)

 32 English syllables (Wang et al., 2012)

 8 English consonants (Wang et al., 2012)

Our focus in the current study
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Our current purpose

improvement of spoken 
sentence classification for BCI
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Improvement points
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■ Apparatus
- Magnetoencephalography (MEG)

- Higher spatial resolution
- Large + relatively high cost

- EEG
- Poor spatial resolution
- Compact + low cost

■ Model training
- Construct models for each participant

- New users have to collect their data
- Time-consuming  to collect a large 

amount of brain data from one person

■ Language                          
- 3 English spoken sentences

■ Feature + classifier
- classifier: template matching
- features:  theta phase patterns

Previous research (Luo & Poeppel, 2007, etc)

- 3 Japanese spoken sentences

Current research

- Subject-independent model
- Data collection is unnecessary

before use
- Large data set by combining

all user’s data

- classifier: support vector machine
- suitable for fewer + high dim. dataset 

- features:  phase patterns in various
frequency bands
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Phase-locked responses
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Neural oscillation tracks speech rhythm 
 Phase-locked responses
 Phase-matching between external rhythm & brain oscillation

 Extract linguistic information from speech

phonetic rhythm: ~ 25ms

low-γ oscillation: ~40Hz
(~ 25ms)

Left hemisphere

phase-matching

(Poeppel, 2003; Luo & Poeppel, 2012)

θ oscillation: ~4-8Hz
(~ 125-250ms)

syllabic rhythm: ~ 125-250ms
Right hemisphere

phase-matching

(From Peelle and Davis, 2012 , p.7)

- phase patterns inducing by phase-locked responses: 
- less individual differences (Kerlin et al., 2010)
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Flowchart of classification
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Subject-
dependent 
model

Subject-
independent
model 

brain
response

Phase-locking

crosstrial
phase coherence
(Luo & Poeppel, 2007)

Feature extraction
Template
matching

SVMextract phase 
patterns +

Model training

Evaluation

Speech input

Leave-one-out 
cross-validation

Leave-one-
subject-out 
cross-validation

Channel selection

β(16-20Hz)

θ(4-8Hz) α(10-14Hz)

low-γ(38-42Hz)

- short-time Fourier
transformation

combination
of phase patterns 
in all freq. bands
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EEG data collection
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 EEG data collection 
 Participants
 L1 10 Japanese speakers (age: μ=24.3; 1 participant  was  excluded)

 Speech stimuli
 3 Japanese spoken sentences

 Average duration: 3,146 ms

 Stimuli presentation
 24 times/ speech = total 72 presentation

 Total # of trials = 605 trials (after artifact rejection + preprocessing) 
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Phase-locked responses
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θ > α, β, low-γ
(p<.05, paired t-tests with
Holm’s p-value adjustment)

Boxplot in all subjects’ Cphase
in each frequency band 
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Crosstrial phase coherence
(Cphase; Luo & Poeppel, 2007)

 Calculated per channel 
 how consistent phase values

are in each frequency band
among trials
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Cphase distribution map

 Cphase distribution map
 theta
 Right hemisphere lateralization

 low-gamma
 Tendency of left lateralization
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0.00
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0.04

Cphase

θ (4-8Hz) low-γ (38-42Hz)
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Subject-dependent models

11

 Accuracy improvement
 Template matching by θ: 46.6%

 SVM by ‘all’: 55.2%

 + 8.6% (p<.05)

 Differences b/w classifiers
 No differences in ‘All’ feature

baseline
best

SVM

Template matching

Accuracies in subject-dependent models

0

10

20

30

40

50

60

70

θ α β low-γ all

A
cc

u
ra

cy
 (

%
)

August 23, 2017, Interspeech 2017  | Stockholm, Sweden



© Hiroki Watanabe, AHC Lab, NAIST

Subject-independent models
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baseline
best

SVM

Template matching

Accuracies in subject-independent models

 Accuracy improvement
 Template by θ:     38.5% (p<.05)

 Template by ‘all’: 44.0% (p<.05)

 + 5.5% (p<.054)

 Differences b/w classifiers
 No differences in ‘All’ feature
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Discussion + Future plan

Phase-locked responses to Japanese spoken sentences 
 syllable tracking in theta
 tracking acoustic feature (Howard & Poeppel, 2010)

 syllable timing:  consistent across languages

 phoneme tracking in low-gamma: Not conclusive
 might be partially due to low S/N ratio in higher frequency band

Classification performances
 Accuracy improvement in ‘All’ feature
 above chance-level in subject-independent classification

 based on neurophysiological speech perception model (Poeppel, 2003, etc)

 SVM: no better performances than template matching

Future plan

 Other classification algorithm + more amount of data
 application to imagined speech recognition

13
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How to calculate Cphase
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Average in time

Cphase𝜃

…

φ24_1 φ24_2 … φ24_29

φ1_1 φ1_2 … φ1_29

φ2_1 φ2_2 … φ2_29

[Cphase1,Cphase2, Cphase29]

…

trial 1

trial 2

trial 24

…

φ24_1 φ24_2 … φ24_29

φ1_1 φ1_2 … φ1_29

φ2_1 φ2_2 … φ2_29

[Cphase1,Cphase2, Cphase29] …

φ24_1 φ24_2 … φ24_29

φ1_1 φ1_2 … φ1_29

φ2_1 φ2_2 … φ2_29

[Cphase1,Cphase2, Cphase29]

Cphase𝑠𝑡𝑖𝑚1 Cphase𝑠𝑡𝑖𝑚2 Cphase𝑠𝑡𝑖𝑚3

Average in stimulus type

Cphase

Average in each frequency band

Obtained in each frequency bin

window in stft

stimulus 1 stimulus 2 stimulus 3
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