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Abstract

Recent speech perception models propose that neural oscilla-
tions in theta band show phase locking to speech envelope
to extract syllabic information and rapid temporal informa-
tion is processed by the corresponding higher frequency band
(e.g., low gamma). It is suggested that phase-locked responses
to acoustic features show consistent patterns across subjects.
Previous magnetoencephalographic (MEG) experiment showed
that subject-dependent template matching classification by theta
phase patterns could discriminate three English spoken sen-
tences. In this paper, we adopt electroencephalography (EEG)
to the spoken sentence discrimination on Japanese language,
and we investigate the performances in various different settings
by using: (1) template matching and support vector machine
(SVM) classifiers; (2) subject dependent and independent mod-
els; (3) multiple frequency bands including theta, alpha, beta,
low gamma, and the combination of all frequency bands. The
performances in almost settings were higher than the chance
level. While performances of SVM and template matching did
not differ, the performance with combination of multiple fre-
quency bands outperformed the one that trained only on single
frequency bands. Best accuracies in subject dependent and in-
dependent models achieved 55.2% by SVM on the combination
of all frequency bands and 44.0% by template matching on the
combination of all frequency bands, respectively.

Index Terms: phase-locking, EEG, subject-independent classi-
fication, neural oscillation

1. Introduction

In human speech communication, an acoustic speech waveform
conveys a message from a speaker to a listener. This commu-
nication medium involves a rhythmic phenomenon where the
dominant modulation frequency reflects the sequential rate of
the syllabic information. The ability of the listener to extract the
linguistic information contained in the acoustic speech depends
on how the brain oscillations entrain the speech input rhythm
and parse the incoming information. One mechanism that sup-
ports such auditory processing is the phase-locking between the
speech amplitude and theta band oscillation (4-8 Hz; ~125-250
ms) in the auditory cortex (for a review see [1]). Because neural
oscillation is related to the excitability of neuronal populations
[2], phase-locking between acoustic information and neural os-
cillation enables acoustic processing during the high excitability
of neuronal populations [1].

Acoustic information in speech also includes such rapid
temporal information as segmental features. Recently, for pro-
cessing such rapid information, parallel and concurrent infor-
mation processing were postulated in theta neural oscillation
and the distinct higher frequency bands of neural oscillation
[3], [4], [5], [6]. For example, the Asymmetric Sampling in
Time (AST) hypothesis [3] argued that theta oscillation in the
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right hemisphere extracts acoustic information in a relatively
long time scale (150-250 ms; e.g., a syllable) and gamma os-
cillation in the left hemisphere extracts rapid spectral changes
(20-40 ms; e.g., formant transition). A previous MEG exper-
iment, which supports the AST hypothesis, demonstrated that
brain responses to non-speech with the corresponding temporal
structure to theta (~200 ms; ~5 Hz) and low gamma (~25 ms;
~40 Hz) showed reliable phase-locking, but non-speech stim-
uli with a temporal structure that corresponds to alpha (~80 ms;
~12.5 Hz) did not [7].

The phase-locked responses to input speech rhythms can be
used for neural response-based spoken sentence discrimination
[8], [9]. If the phase in the neural oscillation entrains the input
speech rhythm, the phase patterns in the neural oscillation dur-
ing processing the same spoken sentence are highly replicable.
Recent MEG experiments demonstrated such replicable phase
patterns across trials and found that subject-dependent template
matching with theta phase-locked responses during speech pro-
cessing discriminated three English spoken sentences [8], [9].
Such a neural response-based spoken speech recognition sys-
tem might be an advantage of brain-computer interface (BCI)
systems. Subject independency is another characteristic that
phase-locked responses validate for BCI applications because
such responses are consistent across other listeners [10], [11].
Given that subject-independent models can be trained based on
phase-locked responses, a data collection benefit is obtained
since a large amount of neuronal response data does not have to
be measured from one participant for model training. However,
classification performances with other languages, other classi-
fiers, or other frequency bands remain unclear in spoken sen-
tence classification using phase-locked responses. In addition,
while EEG, which can be measured non-invasively with rela-
tively low cost and a compact apparatus, is suitable for BCI
systems, its poor spatial resolution might degrade classification
performances compared to MEG [12].

In this study, we adopt EEG to spoken sentence discrimi-
nation on Japanese and investigate the performances of EEG-
based spoken sentence classification in various settings us-
ing the following three schemes: (1) template matching and
SVM classifiers; (2) subject-dependent and -independent mod-
els; (3) multiple frequency bands including theta, alpha, beta,
low gamma, and a combination of all the frequency bands.

2. Method
2.1. EEG data collection
2.1.1. Participants

Ten L1 Japanese speakers participated in our experiment
(males: 6, females: 4, mean age=24.3, SD=1.8), all of whom re-
ported right-handness, no history of neurological problems, and
normal hearing. Our experiment was approved by the ethical
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review board of the Nara Institute of Science and Technology.
Written informed consent was obtained from all of them.

2.1.2. Speech stimuli

Three Japanese spoken sentences were recorded by a female L1
Japanese speaker in a soundproof room at 44.1 kHz and 16-bit
resolution:

(1) Anataga kinou muchuude yondeita honwa omoshirokatta
(The book that you were absorbed in yesterday is interesting.),
(2) Tsui sakki onnanokoga watashini itta kotowa hontouno-
hanashi

(What the girl said to me just now is true.),

(3) Mukou no kabeni kazatteirunowa kareno oniisanga kaita e
(The picture on the other wall was drawn by his older brother.).

The speaker read these three sentences aloud at a normal
speed with a declarative intonation and without any pauses. The
average duration of the sentences was 3,146 ms. The duration
of the moras, which is the rhythm unit of Japanese, were calcu-
lated manually using the Praat software [13]. Fig. 1 shows their
duration in all of the spoken sentence stimuli. The peak was ob-
tained around 6-8 Hz, which corresponds to the theta frequency
range.
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Figure 1: Histogram of average duration of moras in spoken
sentences used in experiment

2.1.3. Apparatus

The EEG data were recorded using 32 Ag/AgCl electrodes on
an EEG cap based on a 10% system (Easycap) at a 1,000-Hz
sampling rate with a high-pass filter at 0.016 Hz and a low-pass
filter at 250 Hz. The additional reference and ground electrodes
were respectively placed on the AFz position and the right ear-
lobe. Impedance was kept below 10 k2 during the experiment.
Because an electrode from one participant showed an increase
in impedance above 10 k2 after the experimental session, that
electrode was rejected from further analysis. Speech stimuli
were binaurally presented to the participants using software
(Presentation, Neurobehavioral Systems) by earphones (ER-1,
Etymotic Research).

2.1.4. Experimental procedure

Participants sat on the chair located in front of a PC display
and placed their left index finger on the keyboard’s F key, their
right index finger on the J key, and remained motionless with-
out blinking (as much as possible) while the speech stimuli were
playing. The speech stimuli were presented based on previous
research [9]. First, all possible nine pairs of spoken sentences
(including pairs of the same sentence) were created. The or-
der of the pairs was randomized, and each spoken sentence was
presented as follows: (1) The sentence ”Are you ready?” was
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presented on the display. Participants started a trial by pushing
the space key; (2) at 1,500 ms from the trial onset, the first sen-
tence of the pair was presented, and the second sentence was
presented at 7,500 ms; (3) at 12,000 ms from the onset, a short
beep sound was played. In order to direct participants’ attention
to speech stimuli, participants were instructed to judge whether
the two spoken sentences were the same or different. If the two
sentences were the same, they pressed the F key, and if not, they
pressed the J key; (4) the trial duration was fixed to 14,500 ms.

Participants repeated the trials until all the pairs were pre-
sented. After all the pairs were presented, the order of the pairs
was randomized again. This randomization was conducted four
times. 24 trials per spoken sentence were presented to the par-
ticipants. EEG recording was conducted in a dimly lit sound-
proof room. The experimental sessions lasted about ten min-
utes.

2.2. Extraction of phase patterns from EEG data
2.2.1. Preprocessing of EEG data

We used the EEGLAB toolbox [14] for preprocessing the
recorded raw EEG data. Artifacts were removed from the data
using a zero-phase FIR high-pass filter (passband edge fre-
quency: 1Hz, -6-dB cutoff frequency: 0.5 Hz) and a zero-phase
FIR low-pass filter (passband edge frequency: 45 Hz, -6-dB
cutoff frequency: 50.6 Hz). The EEG data were extracted from
-500 to 4,000 ms relative to the speech onset and decomposed
using independent component analysis (ICA). Trials containing
artifacts were estimated based on data improbability using each
component [15]. If the joint log probability of a trial was over
five standard deviations above the mean of the probability dis-
tribution, the trial was rejected [15]. As a result, 6.5 % of the
trials were rejected from further analysis.

ICA was performed again, and independent components re-
lated to such artifacts as muscle artifacts, eye blinks, and eye
movements were subtracted from the EEG data with the AD-
JUST plugin [16] for EEGLAB and visual inspection. Finally,
the preprocessed EEG data were extracted from the 0 ~ 2,900
ms time-locked to the stimulus onset.

2.2.2. Cross-trial phase coherence as phase-locking index

To identify the electrode channels that show the phase-locked
responses to input the speech rhythm, we calculated the cross-
trial phase coherence (Cphase) [7], [8], [9] per electrode chan-
nel. The Cphase index quantifies the coherence of the phase
patterns in a frequency bin among trials. The range is from 0
to 1, where 1 represents the maximum coherence. Phase val-
ues were calculated in each window using Short-Time Fourier
Transform (STFT; FFT points: 500, shift points: 100, Hanning
window). Cphase is defined by the following formula:

SN cos(Bkniy)
N
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Here, n, j, i, and k respectively represent each trial (24 tri-
als per sentence), each window in STFT, a frequency bin (2-Hz
interval), and the type of spoken sentence. C'phasey;; was av-
eraged in the temporal domain and among three sentences.



2.3. Classification method on Japanese spoken sentences
using EEG phase patterns

We calculated the averaged Cphase among each frequency bin
in the theta band (frequency bins: 4, 6, and 8 Hz), the alpha
band (10, 12, and 14 Hz), the beta band (16, 18, and 20 Hz),
and the low gamma band (38, 40, and 42 Hz). Then we selected
the top three channels, except for Fpl, Fp2, Ol, and O2, with
the highest averaged Cphase per frequency band. Phase pat-
terns were extracted using STFT (FFT points: 500, shift points:
100, Hanning window) from the top three channels in each fre-
quency band. The phase patterns in each single frequency band
and the combination of all the frequency bands were used as
classification features.

For three-class Japanese spoken sentence classification, we
constructed both subject-dependent and -independent models
based on SVM and template matching. In subject-dependent
classification, the models were trained using each participant’s
data (five frequency bands x two classifiers = ten models per
participant) and evaluated by leave-one-out cross validation.
The accuracy in each model (frequency bands and classifiers)
was obtained by summing up the numbers of correct classifica-
tions obtained in all the participant models and dividing them
by the total trials used for the analysis. In subject-independent
classification, the models were evaluated by leave-one-subject-
out cross validation. As with the subject-dependent models, we
obtained the accuracies by summing up the total numbers of
correct classifications in each fold and dividing them by the to-
tal trials used for the analysis.

For template matching classification, templates were cre-
ated by averaging the data in the training set, and the template
with the minimum squares to a test sample was regarded as the
classification result. For SVM, a linear kernel was used, and
in order to construct the optimized SVM for this task, the cost
parameter was tuned using a grid search.

3. Results
3.1. Cphase in each frequency band

To confirm the phase-locked responses in each frequency band,
we compared the averaged Cphase values among the three high-
est channels. One participant was removed from further analy-
sis because her Cphase values exceeded 2.5 SD from each av-
erage in the alpha, beta, and low gamma frequency bands. As
shown in Fig. 2, the theta phase patterns showed the highest
Cphase patterns among all of the frequency bands.
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Figure 2: Averaged Cphase values among highest three chan-
nels in each frequency band

One-way repeated measures ANOVA revealed a main ef-
fect of frequency bands (F(3, 24)=10.33, p<0.01). Pairwise
comparisons using paired t-tests with Holm’s p-value adjust-
ment revealed that Cphase in theta was significantly higher than
alpha, beta, and low gamma (p<0.05). It is indicated that this
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higher Cphase in theta is derived by phase-locked responses to
Japanese speech envelope [7], [8], [9].

We plotted the topographic maps of Cphase distribution
(Fig. 3). Coinciding with the AST hypothesis [3], a clear right-
lateralized Cphase distribution was observed in the theta fre-
quency band. As for the low gamma, which is another window
for processing the rapid temporal changes in the AST hypothe-
sis, the left-lateralization was not clear, coinciding with a previ-
ous result [7]. The Cphase analysis identified the phase-locked
responses in the theta band.
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Figure 3: Topographic maps of averaged Cphase among partic-
ipants in each frequency band

3.2. Classification performances
3.2.1. Subject-dependent models

Figure 4 shows the accuracies of SVM and template matching
in each frequency band. The best performance achieved 55.2
% accuracy from the SVM on the combination of all frequency
bands. This performance showed 8.6 % improvement compared
to template matching on the theta phase patterns (46.6 %). A
Pearson’s Chi-squared test revealed that this improvement was
significant (X2(1)=8.942, p<0.01); however, the SVM and tem-
plate matching performances based on a combination of all the
frequency bands did not differ significantly (template matching:
54.2 %, x*(1)=0.120, p=0.73).
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Figure 4: SVM and template matching accuracies for subject
dependent models in each frequency band and combination of
all frequency bands. A horizontal line represents a chance level
(33.3%).

In the classification on a single frequency band, the per-
formances show a similar tendency to the Cphase values in
each frequency band (c.f., Fig. 2). We calculated the corre-
lation between the Cphase values and model accuracies from
each frequency band and each participant (Fig. 5). The corre-
lation test revealed a positive correlation between the Cphase
values and the classification performances: SVM: Kendall’s



7 = 0.526, p<0.01, template matching: Kendall’s 7 = 0.473,
p<0.01. This suggests that consistent phase patterns in neural
oscillations across trials are related to the classification perfor-
mances.
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Figure 5: Relationship between Cphase and accuracies. Red
line represents regression.

3.2.2. Subject-independent models

Figure 6 shows the SVM and template matching accuracies
per frequency band. The best performance achieved 44.0 %
from template matching on the combination of all the frequency
bands. Compared to template matching with theta phase pat-
terns, 5.5 % improvement was observed (template matching on
theta: 38.5 %). The difference was marginally significant (Pear-
son’s Chi-squared test: x?(1)=3.714, p=0.054). The difference
between the performances of the two classifiers on this feature
was not significant (Pearson’s Chi-squared test: x2(1)=0.760,
p=0.38). In the single frequency classification, the perfor-
mances based on theta or alpha frequency bands were above
the chance level in both classifiers (one-tailed exact binomial
test: p<0.05). On the other hand, whether performances based
on beta or gamma were above the chance level depended on the
classifier. For the models trained on the beta phase patterns,
the SVM accuracy was significantly above chance level (37.2
%, p<0.05), but template matching accuracy only showed a
marginally significant difference (36.5 %, p=0.053). In the case
of the gamma phase patterns, SVM failed to reach chance level
(33.1 %), but the template matching accuracy significantly ex-
ceeded chance level (37.0 %, p<0.05).

70, . SVM
[ Template
60,
_ Best:
& 50 44.0%)
340
o
330
Q
<2
10
o
0 o 0 2l AN

Figure 6: SVM and template matching accuracies for subject-
independent models in each frequency band and combination of
all frequency bands. A horizontal line represents a chance level
(33.3%).

4. Discussion

In this study, we investigated the performances of EEG-
based Japanese spoken sentence classification by two classifiers
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(SVM and template matching), multiple frequency bands, and
a combination of all the frequency bands in subject-dependent
and -independent models based on phase patterns.

In the analysis of phase-locked responses, we observed that
theta neural oscillation showed phase-locking to envelopes in
Japanese spoken sentences. Because phase-locked responses
are driven by acoustics in speech [9], we expected such re-
sponses to speech rhythm in Japanese spoken sentences. As
for the types of classifiers, we expected that SVM showed a
better performances than template matching, but there were no
differences between classifiers.

We found that the best performances were obtained from
models based on a combination of all the frequency bands. The
feature improved the accuracies compared to template match-
ing based on theta phase patterns (subject-dependent: 8.6%,
subject-independent: 5.5%). Reliable performances in subject-
independent classification are one piece of evidence that phase-
locked responses showed consistent patterns across other lis-
teners [10], [11]. In subject-independent classification based
on a single frequency band, the phase patterns in theta and al-
pha showed above chance level performances in both classifiers.
Recent perception models identified the role of cross-coupled
oscillations in the lower (<10 Hz) and distinct higher frequency
bands [3], [4], [5], [6], and an MEG experiment showed that
neural oscillation in alpha did not show phase-locking to non-
speech stimuli with a temporal structure that corresponds to al-
pha [7]. Thus, the theta phase patterns that consistently track
envelopes across listeners realize reliable classification perfor-
mances, but it is unlikely that the performances of the mod-
els trained on the alpha phase patterns were derived by phase-
locked responses to input speech rhythm. In the beta and low
gamma frequency bands, whether classification performances
were above chance depended on the classifiers. Considering
the above perception models, the above chance level classifica-
tion performances in the two frequency bands in either classi-
fier might be one piece of evidence for the existence of cross-
coupled neural oscillation in the theta and higher frequency
bands.

5. Conclusions and future work

We demonstrated the improvement of the classification accu-
racy in models trained on a combination of multiple frequency
bands. This improvement is based on recent neurophysiolog-
ical perception models. Replicable phase patterns across tri-
als were related to classification performances, and consistent
phase-locked responses across other listeners enable subject-
independent classification. In the future, for application to BCI
systems, we must extend the number of sentence classes and
investigate robustness to acoustical variabilities in spoken sen-
tences (e.g., sentences spoken by multiple speakers).

In this study, we found no performance differences between
classifiers. In the future, we will also investigate SVM with
other kernels (e.g., RBF kernel) or such other classification al-
gorithms as deep neural networks (DNN). Generally, a DNN
needs more datasets than other algorithms for model training,
but the subject independency of phase-locked responses might
overcome this obstacle.
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