
Ensembles of Multi-scale VGG Acoustic Models

Michael Heck1,2, Masayuki Suzuki1, Takashi Fukuda1, Gakuto Kurata1, Satoshi Nakamura2

1Watson Multimodal, IBM Research - Tokyo, Japan
2Graduate School of Information Science, Nara Institute of Science and Technology, Japan
michael-h@is.naist.jp, szuk@jp.ibm.com, fukuda1@jp.ibm.com, gakuto@jp.ibm.com,

s-nakamura@is.naist.jp

Abstract
We present our work on constructing multi-scale deep convolu-
tional neural networks for automatic speech recognition. Sev-
eral VGG nets have been trained that differ solely in the ker-
nel size of the convolutional layers. The general idea is that
receptive fields of varying sizes match structures of different
scales, thus supporting more robust recognition when com-
bined appropriately. We construct a large multi-scale system
by means of system combination. We use ROVER and the fu-
sion of posterior predictions as examples of late combination,
and knowledge distillation using soft labels from a model en-
semble as a way of early combination. In this work, distillation
is approached from the perspective of knowledge transfer pre-
training, which is followed by a fine-tuning on the original hard
labels. Our results show that it is possible to bundle the in-
dividual recognition strengths of the VGGs in a much simpler
CNN architecture that yields equal performance with the best
late combination.
Index Terms: acoustic modeling, knowledge distillation, en-
sembles, multi-scale, speech recognition, VGG

1. Introduction
The construction of large-scale systems for automatic speech
recognition is a multi-faceted challenge that involves a substan-
tial amount of work. Along the path to a final system, one typ-
ically has to solve complex tasks such as model selection, ef-
ficient combination of sub-systems, and system integration for
the application to target data. Very large high performance sys-
tems such as [1] are usually built by combining sufficiently di-
verse models, so that individual model hypotheses complement
each other and result in an overall better system output. Systems
that differ in the acoustic front-end, training objective, model
type or the used training data are frequent candidates for com-
bination. Often, more than one distinction is exploited to max-
imize positive effects. However, finding good pairs for such a
combination is not a trivial task. Moreover, the development of
various distinctive systems in parallel can bind many resources.

One of the most popular methods for system combination is
ROVER [2], where the combination is done on hypothesis level
after decoding the same data with multiple systems. The more
complex confusion network combination method [3] generates
a lattice given 1-best hypotheses from different systems to find
a path with higher scores. Lastly, the combination of decoder
output lattices [4] prior to a refined decoding tries to make use
of all the information each individual system can provide. All
these methods have in common that they are expensive in terms
of development costs and especially in accumulated decoding

This work was done during the first author’s internship period in
IBM

time: Each system has to transcribe the target data entirely be-
fore any combination can be performed to produce the final out-
put. This circumstance might be negligible for small target data
such as the test sets of popular annual speech recognition eval-
uations [5, 6], but it is a knockout argument for handling large
data sets. Semi-supervised training methods - with more and
more data being freely available in the world wide web - make
use of massive amounts of automatically transcribed audio data.
To produce such transcriptions in reasonable time, fast yet pow-
erful speech recognizers are in dire need.

Combination of neural network based systems can be done
by fusing posterior predictions after acoustic model (AM) scor-
ing, for instance by stacking the posteriors of individual models
[7] or joint training of different network topologies [8]. The ad-
vantage over the methods mentioned above is that the language
model (LM) scoring has to be performed only once, which saves
a good portion of decoding complexity. The disadvantage is the
need of a more complex training due to the combined archi-
tecture. A method called knowledge distillation can be used
to follow a fundamentally different approach to model combi-
nation. Knowledge distillation [9] is derived from the princi-
ple of model compression [10] and drew attention anew in the
wake of regained popularity of fundamental deep learning ap-
proaches to speech processing [11]. The general idea is to train
a simple model with the help of information provided by a much
more complex model (as done in [12], for instance). Thus, the
knowledge of a “teacher” is compressed – or distilled – into a
“student”. Knowledge distillation from ensembles [13] extends
this idea by using a whole ensemble of models as teacher, which
effectively combines multiple models into a single model.

This work describes our approach to building a large but
lightweight and robust automatic speech recognizer that can be
utilized for offline transcription of extensive amounts of data.
We resort to conventional system combination methods to make
use of multiple models for decoding. Our strategy to construct
a set of models for combination is inspired by a multi-scale
convolutional neural network (MS-CNN) architecture that has
been successfully applied to object detection [14]. The MS-
CNN consists of sub-networks with receptive fields that vary
in size. The idea is that these receptive fields match objects
of different scales, which is hoped to support robust recogni-
tion. We adapt the concept of multi-scaling by training sev-
eral deep convolutional neural network models with VGG net
architecture [15] that solely differ in their kernel size for the
convolutional layers. We compare ROVER to fusing posterior
predictions by averaging, both being examples of late combi-
nation, i.e., a combination that happens late in the decoding
pipeline. We show that the difference in kernel size is produc-
ing sufficiently diverse model sets for successful combination.
We further demonstrate the effectiveness of knowledge distilla-
tion from ensembles to train a classical CNN model [16] that

Copyright © 2017 ISCA

INTERSPEECH 2017

August 20–24, 2017, Stockholm, Sweden

http://dx.doi.org/10.21437/Interspeech.2017-9201616

p
o
o
l 2

x
1

 o
r 2

x
2

co
n
v. 6

4

co
n
v. 6

4

p
o
o
l 2

x
1

co
n
v. 1

2
8

co
n
v. 1

2
8

p
o
o
l 2

x
1

co
n
v. 2

5
6

co
n
v. 2

5
6

p
o
o
l 2

x
1

co
n
v. 2

5
6

co
n
v. 5

1
2

co
n
v. 5

1
2

co
n
v. 5

1
2

FC
 2

0
4

8

FC
 2

0
4

8

FC
 2

0
4

8

FC
 9

3
0

0

in
p

u
t 4

0
x
2

3

40x23 20x19 10x15 4x9 2x3

XxY XxY XxY XxY

Kernel size:

Exemplary featuremap size for 3x3 kernel:

4x4
5x5

6x6
7x7

2x2

3x2

4x2

2x3

3x3

4x3

2x4

3x4

Time dimension Y

Fre
q

u
e
n
cy

 d
im

e
n
sio

n
 X

Used kernel sizes:

p
o
o
l 3

x
1

co
n
v. 1

2
8

co
n
v. 2

5
6

FC
 2

0
4

8

FC
 2

0
4

8

FC
 2

0
4

8

FC
 9

3
0

0

in
p

u
t 4

0
x
1

1

FC
 2

0
4

8

9x9
4x3

Kernel size:

VGG kernels VGG CNN

FC
 5

1
2

Figure 1: Left: Set of permitted kernel sizes for the VGG nets. Center: Layout of the VGG nets. All convolutional layers share the same
kernel size. Padding, pooling and the featuremap sizes depend on the selected kernel size. See also Table 1. Right: Classical CNN that
is used as student in the knowledge distillation.

is much simpler in structure but yields equal performance when
compared to the best conventional system combination. We dif-
fer from [13] in that we successfully distill knowledge from a
fairly homogeneous ensemble. [17] utilizes knowledge distilla-
tion as a pre-training step and shows that it can lead to faster
initialization of entire networks and help train complex models
with better performance even with a weak teacher model. Sim-
ilarly, we utilize the distillation to pre-train an experienced, i.e.,
already initialized model to support a subsequent fine-tuning in
finding a better local optimum.

2. Multi-scale ensemble

What we call multi-scale ensemble is a combination of several
very deep convolutional networks that share the same base ar-
chitecture and are trained on the same data in the same manner,
but differ in the size of their receptive fields. Our base architec-
ture is derived from the VGG net that is well known from the
Imagenet 2014 challenge [15] and adjusted for the purpose of
LVCSR. In the VGG net architecture, the large convolutional
kernels of standard CNNs are replaced with small kernels that
are arranged in stacks of layers, which leads to a much deeper
net, and thus more non-linearity. This change is desired as it
produces the same receptive field with less parameters.

We use the “WDX” network layout of [18] that features 10
convolutional and 4 fully connected weight layers. A graphical
representation of this layout is given in Figure 1. The default
network uses a kernel size of 3x3 (frequency domain x time do-
main). Zero padding with size 1 is applied in the frequency di-
mension before each convolution. The max pooling layers have
size 2x1, with a stride that is equal to the pooling size, i.e., 1 in
the time domain. This configuration has the effect, that the fre-
quency dimension is kept fixed during the convolutions, and is
reduced only through max pooling. Figure 1 depicts the details
of the base model. The network input is a stack of frames with
stacking context 1 + 2c, where c = 11 leading and succeeding
frames are stacked to the center frame. Each frame is a 40 di-
mensional logMel feature vector. The last fully connected layer
of the network represents 9300 context dependent HMM states,
thus the output is a vector of posterior probabilities over states
for each stacked input frame.

2.1. Models

In order to produce candidates for a model ensemble, we copy
the base model architecture and modify the kernel size, where
we distinct between the sizes X and Y in the frequency domain
and time domain, respectively, meaning that the kernels are al-
lowed to be non-quadratic. We tried to keep the output dimen-
sionality of the feature extraction sub-network before the fully
connected layers the same for each individual model, if pos-
sible. Thus, we adjust the zero padding for the convolutional
layers and the max pooling size to compensate for changes in
the kernel size: For a larger dimensionality, more excessive zero
padding is required, and a larger max pooling window and stride
is neccessary for smaller kernel sizes. Table 1 lists the specifics
of all possible candidates that we generated for a model ensem-
ble. Having the default kernel size 3x3 in mind, we allow vari-
ants with any size in {2,3,4}x{2,3,4}. In addition to that, we
also use 5x5, 6x6 and 7x7 kernels.

2.2. Combination

We build model ensembles by means of late model combination
in different stages of the decoding process. We use the AMs
from Subsection 2.1 to run multiple decodings on the target data
for ROVER combination. Our setup performs a majority vote
on token level, without considering confidence measures.

Alternatively, we combine models on posterior probability
level after scoring the audio data with multiple AMs. For each
feature vector xi of frame i, we compute the non-weighted av-
erage of posterior probabilities for all context-dependent (CD)
states si:

Pensemble(si|xi) =

∑M
m=1 Pm(si|xi)

M
, ∀i ∈ {1, . . . , N} (1)

This is straightforward as we use the same CD state tar-
get layout for the output layer of all M AMs in the multi-scale
ensemble. After posterior probability combination, we com-
plete decoding with the same pipeline as used for the individual
ROVER systems. The latter approach has the advantage that
full decoding has do be performed only once, which naturally
reduces overall run-time by a considerable amount. Our third
way of model combination is based on knowledge distillation
and is explained in the following section.

1617

Table 1: Frequency padding, time padding and max pooling parameters for each kernel size. The values are set so that the final feature
map before the fully connected layers has size 2x3. For a kernel size of 2 in the time dimension, the feature map size is 2x5.

Layer 2x2 2x3 2x4 3x2 3x3 3x4 4x2 4x3 4x4 5x5 6x6 7x7

conv fPad=1 fPad=1 fPad=1,tPad=1 fPad=1 fPad=1 fPad=1,tPad=1 fPad=3 fPad=3 fPad=3,tPad=1 fPad=3,tPad=1 fPad=4,tPad=2 fPad=4,tPad=2
conv,pool fPad=1 fPad=1 fPad=1 fPad=1,tPad=1 tPad=2 fPad=2 fPad=2,tPad=1 fPad=3,tPad=1 fPad=3,tPad=2 fPad=4,tPad=2

conv fPad=1 fPad=1 fPad=1,tPad=1 fPad=1 fPad=1 fPad=1,tPad=1 fPad=3 fPad=3 fPad=3,tPad=1 fPad=3,tPad=1 fPad=3,tPad=2 fPad=3,tPad=2
conv,pool fPad=1 fPad=1 fPad=1,tPad=1 fPad=1 fPad=1 fPad=1,tPad=1 fPad=2 fPad=2 fPad=2,tPad=1 fPad=2,tPad=1 fPad=2,tPad=2 fPad=2,tPad=2

conv fPad=1 fPad=1 fPad=1,tPad=1 fPad=1 fPad=1 fPad=1,tPad=1 fPad=3 fPad=3 fPad=3,tPad=1 fPad=3,tPad=1 fPad=3,tPad=2 fPad=3,tPad=2
conv fPad=1 fPad=1 fPad=1 fPad=2 fPad=2 fPad=1,tPad=1 fPad=2,tPad=1 fPad=3,tPad=2
conv,pool pool=2x2 pool=2x2 pool=2x2 tPad=1 fPad=2,tPad=1 fPad=2,tPad=2

conv fPad=1 fPad=1 fPad=1 fPad=1 fPad=1 fPad=1 fPad=3 fPad=3 fPad=3 fPad=3,tPad=1 fPad=3,tPad=1 fPad=3,tPad=2
conv fPad=1 fPad=1 fPad=1 fPad=3,tPad=1 fPad=3,tPad=1 fPad=3,tPad=2
conv,pool fPad=1 fPad=1 fPad=1 tPad=1 fPad=1,tPad=1 fPad=3,tPad=2

3. Distillation from ensembles
Knowledge distillation is a method for model compression and
knowledge transfer that requires a teacher model to train or
guide a student model. The guidance is given through soft out-
puts, typically in the form of posterior probabilities, produced
by the teacher model, given the shared data intended for train-
ing. Knowledge is distilled by increasing the temperature T in
the tempered softmax function that is used in the last layer of a
neural network to convert logits zi into posterior probabilities:

p(ck|x) =
exp zk

T∑K
l=1 exp

zl
T

(2)

where P (si|xi) = (p(c1|xi), . . . , p(cK |xi)).
A temperature higher than the default value of T = 1 pro-

duces a softer probability distribution over the CD states of the
network. Typically, the student is showing competitive perfor-
mance to the teacher model after distillation, commonly with
the advantage of being less complex and therefore faster than
its advisor model. The teacher is not restricted to being a sin-
gle model. Ensembles of models can likewise serve as teacher.
We use an ensemble of multi-scale VGG net models as teacher-
ensemble to train a classical CNN student with much simpler ar-
chitecture than each of the VGGs. Figure 1 shows the details of
the CNN architecture. The ensemble is constructed by averag-
ing the CD state posterior probabilities of the single VGG nets,
that all share the same layout of the output layer. This is iden-
tical to the model combination on posterior level mentioned in
Section 2.2, except that now the target data is intended for train-
ing. We use the distillation in the sense of knowledge transfer
pre-training, i.e., a student model is first trained with the soft
labels of the ensemble as targets to push the model parameters
into a good direction in the parameter space. The pre-training is
followed by a fine-tuning with the original hard labels as targets,
using a lower learning rate, to reach a good local optimum.

4. Experiments
The training data for our models is comprised of 50 hours of
conversational interview-style English. The evaluation data is
of the same nature, with the speaker sets being disjoint. The
number of speakers for the entire data set is 971, the average
utterance length is 3.15 seconds. The evaluation set is split into
three subsets A (3.5h, 24108 words), B (2.9h, 32539 words)
and C (2.2h, 18713 words), sorted by increasing difficulty for a
speech recognizer, caused by higher amounts of speakers with
various English accents.

All models are trained using the cross-entropy criterion.
The VGG nets are implemented in torch [19]. We use balanced
sampling as described in [20] and optimize the training using

stochastic gradient descent (SGD) with a batch size of 128 and
an L2 weight penalty of 1e−6. The inital learning rate is set
to 0.03 and is divided by 3 after 25M, 30M and 35M frames.
Training is stopped after 40M frames. The classical CNN is
built with an in-house toolkit. The initial learning rate is 5e−3
for the knowledge distillation pre-training and 5e−4 for the
fine-tuning and is reduced using the Newbob strategy. We use
the average word error rate (WER) over utterances for evalu-
ation. For decoding we utilize a vocabulary that covers 250K
words and a 4-gram LM with 200M n-grams. The latter was
built by estimating a model for the training data transcripts and
interpolating it with a general purpose LM.

4.1. Multi-scale VGGs

The nine different models with their kernel sizes circling around
the default all performed quite similarly, with the difference be-
tween best (25.0% WER) and worst system being 0.6% absolute
in WER. The model with default kernel produced 25.2% WER.
With the more extreme squared kernel sizes, the accuracy of
the models clearly suffer. The poorest model is using the 6x6
kernel and yields 27.0% WER. Moreover, the training duration
is growing considerably larger as the more aggressive padding
and pooling in all dimensions take their toll.

4.2. ROVER combination

The ROVER combination proved very effective, even though
most models achieve very similar WERs. We combined be-
tween 3 and 9 models in intuitive constellations such as models
with squared kernels of increasing size, or with kernels that dif-
fer in size along one or both axes. Generally, the tendency was
that the more models in the combination, the better the outcome
in terms of WER. If we constrained our models to only use
squared kernels, combining all systems from kernel size 2x2
to 7x7 produced the best hypotheses, despite the poorer per-
formance of the large-sized kernel models. The best ROVER
combination was achieved by considering 9 systems whose ker-
nel sizes circle around the 3x3 default, improving the accuracy
by 4.7% relative compared to the baseline architecture, and 4%
relative compared to the single best architecture. The details are
listed in Table 2.

4.3. Posterior combination

The best ensembles for ROVER were our blueprint for the pos-
terior combination after AM scoring and prior to LM scoring.
The posterior averaging is unweighted, as is the ROVER combi-
nation. For computing the combined posteriors, we first extract
the logit values from the layer right before the final softmax
layer. We do this for each frame, given all networks of the en-

1618

Table 2: Performance of the ROVER combination and posterior combination, compared to decoding with our default VGG net.

Ensemble Kernels ROVER Posterior
2x2 2x3 2x4 3x2 3x3 3x4 4x2 4x3 4x4 5x5 6x6 7x7 A B C all A B C all

VGG x1 X 17.6 24.5 33.4 25.2 17.6 24.5 33.4 25.2

VGG x2 X X - - - - 17.5 23.6 32.4 24.5
VGG x3 X X X 17.2 24.2 32.9 24.8 17.2 23.4 32.2 24.3
VGG x6 X X X X X X 17.0 23.7 32.1 24.3 17.0 23.3 32.0 24.1
VGG x9 X X X X X X X X X 16.8 23.4 31.9 24.0 17.1 23.0 31.8 24.0

Table 3: Performance of the distilled CNN model, after pre-
training (pt) and fine-tuning (ft) the experienced student.

System A B C all

CNN (exp. student) 46.2 34.5 44.5 41.7
CNN (adapt) 18.3 22.9 33.3 24.8

VGG x1→ CNN (pt) 19.2 23.7 34.5 25.8
VGG x6→ CNN (pt) 18.7 23.3 34.0 25.3
VGG x9→ CNN (pt) 18.7 23.2 33.9 25.3

VGG x1→ CNN (ft) 17.7 22.6 32.6 24.3
VGG x6→ CNN (ft) 17.6 22.6 32.5 24.2
VGG x9→ CNN (ft) 17.4 22.4 32.4 24.1

semble. The values are averaged frame-wise and dumped, ready
to be loaded for the rest of the decoding. Besides the smaller
overhead for decoding, one advantage of the posterior combi-
nation is that 2-system ensembles are feasible, as opposed to
the majority vote based ROVER, which has to rely on at least
3 systems for it to be reasonable. Our results in Table 2 show
that the posterior combination can be superior when only a few
models are involved in the combinations: A 3-system posterior
combined ensemble can compete even with a 6-system ROVER.
With increasing size of the ensemble, both methods converge to
the same overall performance, with the posterior averaging still
holding the advantage of a simpler decoding. Interestingly, the
posteriorgram combination leads to the largest improvements
on the more difficult portions of the evaluation data (subsets
B and C). The richer informations captured by the soft labels
seem more valuable for handling tougher data.

4.4. Knowledge distillation

We use knowledge distillation to pre-train a classical CNN,
where the teacher is an ensemble of VGGs. Our student is al-
ready experienced in that it has been initialized by a training
on about 2000h of out-of-domain data from the Switchboard
corpus. The teacher ensemble is represented by averaged soft
labels that are computed by the ensemble members using the
tempered softmax function in Equation 2 with the temperature
parameter set to T = 2. Initial experiments with untempered
softmax did not lead to satisfactory results, thus we resorted to
a parameter value that has already been confirmed to be a very
reasonable choice [9, 17]. We display the performance of this
system before and after knowledge distillation in Table 3.

We also compare to the standard approach of domain adap-
tation via fine-tuning on the 50h of in-domain data using the
original hard labels, which leads to a strong baseline that can
beat the single best VGG, but does not triumph over our best
multi-scale VGG ensemble. Our numbers reveal that the knowl-
edge distillation alone, i.e., the pre-training on soft labels, is not
enough to challenge the conventionally adapted model. How-

Table 4: Initial results on the Switchboard 300h data set for
combining three multi-scale VGG models.

Kernels ROVER Posterior2x2 3x3 4x4

12.4 12.3 12.0 11.8 11.8

ever, we see that after fine-tuning on the original hard labels the
performance can be greatly increased. This phenomenon is in
conformity with the observations made in [17]. The fine-tuned
CNN model outperforms the conventionally adapted model and
achieves equal performance with the best VGG ensemble, al-
beit its much simpler structure. This is remarkable insofar that
even a model initialized on a fairly large amount of data can still
benefit from the guidance given by the knowledge distillation to
reach a better optimum in the parameter space.

4.5. Scalability

Table 4 lists results of scalability experiments on the Switch-
board 300h data set. As can be seen, both ROVER and poste-
riorgram combination clearly improve decoding performance,
even with just three multi-scale VGGs in the model ensemble.
We also analyzed the impact of the kernel size on the real-time
factor (RTF) for the model training with a single GPU (NVIDIA
Tesla K80). Using the default 3x3 kernel yields an RTF of 0.12.
The lowest (0.08) and highest (0.5) RTFs are achieved with the
smallest (1x2) and largest (7x7) kernels, respectively.

5. Conclusions
We have shown that deep convolutional neural network acoustic
models that solely differ in their kernel size hold sufficient di-
versity and complementarity for successful model combination,
which greatly simplifies building ensembles of models. Both
ROVER and posterior probability based combination of such
multi-scale models are efficient for improving recognition ac-
curacy, the latter being superior in terms of reduced decoding
complexity, higher robustness on difficult data and greater sta-
bility even on small ensembles. We successfully distilled the
knowledge of these ensembles into a classical CNN with much
simpler architecture and achieved equal performance compared
to the best performing conventional combination. The aggre-
gate of our results shows that multi-scale model ensembles can
be used successfully in a variety of ways and that the method
scales with the training data.

6. Acknowledgements
We express our gratitude to Tom Sercu for providing the Torch
code that we used to build the VGG nets. Part of this work was
supported by JSPS KAKENHI Grant Number JP17H06101.

1619

7. References
[1] G. Saon, G. Kurata, T. Sercu, K. Audhkhasi, S. Thomas, D. Dim-

itriadis, X. Cui, B. Ramabhadran, M. Picheny, L.-L. Lim et al.,
“English conversational telephone speech recognition by humans
and machines,” arXiv preprint arXiv:1703.02136, 2017.

[2] J. G. Fiscus, “A post-processing system to yield reduced word er-
ror rates: Recognizer output voting error reduction (rover),” in Au-
tomatic Speech Recognition and Understanding, 1997. Proceed-
ings., 1997 IEEE Workshop on. IEEE, 1997, pp. 347–354.

[3] L. Mangu, E. Brill, and A. Stolcke, “Finding consensus among
words: lattice-based word error minimization.” in Eurospeech,
1999.

[4] H. Xu, D. Povey, L. Mangu, and J. Zhu, “An improved consensus-
like method for minimum Bayes risk decoding and lattice com-
bination,” in Acoustics Speech and Signal Processing (ICASSP),
2010 IEEE International Conference on. IEEE, 2010, pp. 4938–
4941.

[5] M. Cettolo, J. Niehues, S. Stüker, L. Bentivogli, R. Cattoni, and
M. Federico, “The IWSLT 2016 evaluation campaign,” in Interna-
tional Workshop on Spoken Language Translation (IWSLT), 2016.

[6] A. Ali, P. Bell, J. Glass, Y. Messaoui, H. Mubarak, S. Renals, and
Y. Zhang, “The MGB-2 challenge: Arabic multi-dialect broadcast
media recognition,” arXiv preprint arXiv:1609.05625, 2016.

[7] L. Deng and J. Platt, “Ensemble deep learning for speech recog-
nition,” 2014.

[8] H. Soltau, G. Saon, and T. N. Sainath, “Joint training of convolu-
tional and non-convolutional neural networks.” in ICASSP, 2014,
pp. 5572–5576.

[9] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in
a neural network,” arXiv preprint arXiv:1503.02531, 2015.

[10] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, “Model com-
pression,” in Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM,
2006, pp. 535–541.

[11] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang,
“Phoneme recognition using time-delay neural networks,” IEEE
transactions on acoustics, speech, and signal processing, vol. 37,
no. 3, pp. 328–339, 1989.

[12] W. Chan, N. R. Ke, and I. Lane, “Transferring knowledge from a
RNN to a DNN,” arXiv preprint arXiv:1504.01483, 2015.

[13] Y. Chebotar and A. Waters, “Distilling knowledge from ensembles
of neural networks for speech recognition,” Interspeech 2016, pp.
3439–3443, 2016.

[14] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, “A unified multi-
scale deep convolutional neural network for fast object detection,”
in European Conference on Computer Vision. Springer, 2016, pp.
354–370.

[15] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[16] T. N. Sainath, A.-r. Mohamed, B. Kingsbury, and B. Ramabhad-
ran, “Deep convolutional neural networks for LVCSR,” in Acous-
tics, speech and signal processing (ICASSP), 2013 IEEE interna-
tional conference on. IEEE, 2013, pp. 8614–8618.

[17] Z. Tang, D. Wang, Y. Pan, and Z. Zhang, “Knowledge transfer
pre-training,” arXiv preprint arXiv:1506.02256, 2015.

[18] T. Sercu, C. Puhrsch, B. Kingsbury, and Y. LeCun, “Very
deep multilingual convolutional neural networks for LVCSR,” in
Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE
International Conference on. IEEE, 2016, pp. 4955–4959.

[19] R. Collobert, S. Bengio, and J. Mariéthoz, “Torch: a modular ma-
chine learning software library,” Idiap, Tech. Rep., 2002.

[20] T. Sercu and V. Goel, “Advances in very deep convolutional neural
networks for LVCSR,” arXiv preprint arXiv:1604.01792, 2016.

1620

