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ABSTRACT
This paper presents several F0 transformation techniques for
statistical voice conversion (VC) with direct waveform modi-
fication with spectral differential (DIFFVC). Statistical VC is
a technique to convert speaker identity of a source speaker’s
voice into that of a target speaker by converting several acous-
tic features, such as spectral and excitation features. This
technique usually uses vocoder to generate converted speech
waveforms from the converted acoustic features. However,
the use of vocoder often causes speech quality degradation of
the converted voice owing to insufficient parameterization ac-
curacy. To avoid this issue, we have proposed a direct wave-
form modification technique based on spectral differential fil-
tering and have successfully applied it to intra-gender singing
VC (DIFFSVC) where excitation features are not necessary
converted. Moreover, we have also applied it to cross-gender
singing VC by implementing F0 transformation with a con-
stant rate such as one octave increase or decrease. On the
other hand, it is not straightforward to apply the DIFFSVC
framework to normal speech conversion because the F0 trans-
formation ratio widely varies depending on a combination of
the source and target speakers. In this paper, we propose sev-
eral F0 transformation techniques for DIFFVC and compare
their performance in terms of speech quality of the converted
voice and conversion accuracy of speaker individuality. The
experimental results demonstrate that the F0 transformation
technique based on waveform modification achieves the best
performance among the proposed techniques.

Index Terms— voice conversion, speaker identity, F0

transformation, Gaussian mixture model, direct waveform
modification.

1. INTRODUCTION

Varieties of voice characteristics, such as voice timbre and
fundamental frequency (F0) patterns, produced by individual
speakers are always restricted by their own physical constraint
due to the speech production mechanism. This constraint is
helpful for making it possible to produce a speech signal ca-
pable of simultaneously conveying not only linguistic infor-

mation but also non-linguistic information such as speaker
identity. However, it also causes various barriers in speech
communication; e.g., severe vocal disorders are easily caused
even if speech organs are partially damaged; and we hesitate
to talk about something private using a cell phone if we are
surrounded by others. If the individual speakers freely pro-
duced various voice characteristics over their own physical
constraint, it would break down these barriers and open up an
entirely new speech communication style.

Voice conversion (VC) is a potential technique to make
it possible for us to produce speech sounds beyond our own
physical constraint [1]. VC research was originally started to
develop a speaker conversion technique to transform speaker
identity of a source speaker’s voice into that of a target
speaker’s voice while preserving the linguistic content [2].
A mainstream of VC is a statistical approach to developing
a conversion function using a parallel data set consisting of
utterance pairs of the source and target speakers. As one of
the most popular statistical VC methods, a regression method
using a Gaussian mixture model (GMM) was proposed [3].
To develop a better conversion function, various VC meth-
ods have been proposed by implementing more sophisticated
techniques, such as Gaussian process regression, [4, 5] deep
neural networks [6, 7], non-negative matrix factorization
[8, 9], and so on. We have also significantly improved per-
formance of the standard GMM-based VC method by incor-
porating a trajectory-based conversion algorithm to make it
possible to consider temporal correlation in conversion [10],
modeling additional features to alleviate an over-smoothing
effect of the converted speech parameters, such as global
variance (GV) [10] and modulation spectrum (MS) [11], and
implementing sophisticated vocoding techniques, such as
STRAIGHT [12] with mixed excitation [13]. Furthermore,
a real-time conversion process has also been successfully
implemented for the state-of-the-art GMM-based VC method
[14]. However, speech quality of the converted voices is still
obviously degraded compared to that of the natural voices.
One of the biggest factors causing this quality degradation
is the waveform generation process using a vocoder [15],
which is still observed even when using high-quality vocoder

693978-1-5090-4903-5/16/$31.00 ©2016 IEEE GlobalSIP 2016



systems [12, 16, 17].
In singing VC (SVC) to convert singing voices rather than

normal voices, to avoid the quality degradation caused by the
vocoding process [15], we have proposed an intra-gender
SVC method with direct waveform modification based on
spectrum differential (DIFFSVC) [18, 19], focusing on F0

transformation is not necessary in the intra-gender SVC. The
DIFFSVC framework can avoid using the vocoder by di-
rectly filtering an input singing voice waveform with a time
sequence of spectral parameter differentials estimated by a
differential GMM (DIFFGMM) analytically derived from the
conventional GMM used in the standard VC method. More-
over, to apply intra-gender DIFFSVC framework to cross-
gender SVC as well, we have proposed an F0 transformation
technique with direct residual signal modification [20] based
on time-scaling and resampling. In the proposed technique,
waveform similarity-based overlap-add (WSOLA) [21] is ap-
plied to time-scale modification to avoid quality degradation
caused by error of automatic pitch mark detection, which
is often needed in other OLA methods, such as time do-
main pitch-synchronous overlap-add (TD-PSOLA) or linear
prediction PSOLA (LP-PSOLA) [22]. We have found that
the DIFFSVC framework can significantly improve speech
quality of the singing converted voices compared to the con-
ventional framework using the vocoding process.

Motivated by this success of the DIFFSVC framework in
SVC, we have started to apply it to normal speech conver-
sion (i.e., normal VC). However, we have found that it is not
straightforward to apply the DIFFSVC framework to normal
VC because more complicated F0 transformation is neces-
sary in VC compared to SVC; e.g., even if using a simple
F0 transformation method with a constant F0 transformation
ratio [23], such a ratio widely varies depending on a combina-
tion of the source and target speakers in normal VC although
it can be fixed to double or half in cross-gender SVC. In the
Voice Conversion Challenge 2016 (VCC 2016) [24], only a
part of the DIFFSVC framework has been successfully ap-
plied to normal VC and our developed VC system still needs
to use the vocoding processing for performing the F0 transfor-
mation because the direct residual signal modification tends
to cause quality degradation depending on a setting of the F0

transformation ratio. Although our developed VC system (the
NU-NAIST VC system) has been evaluated as one of the best
systems achieving the best conversion accuracy on speaker
identity and high speech quality in VCC 2016 [25], we have
confirmed that its performance is still comparable to that of
our conventional VC system [26].

In this paper, we propose several F0 transformation tech-
niques for normal VC with direct waveform modification with
spectral differential (DIFFVC) to make it possible to widely
accept various F0 transformation ratios. The following F0

transformation techniques using with or without the vocoder
process are investigated: 1) DIFFVC with F0 transformation
using STRAIGHT vocoder (the NU-NAIST VC system for

VCC 2016 [26]), 2) DIFFVC with F0 transformation based
on the direct residual signal modification using time-scaling
and resampling [20], and 3) DIFFVC with F0 transformation
based on waveform modification using time-scaling and re-
sampling. The experimental results demonstrate that the DIF-
FVC with F0 transformation based on waveform modifica-
tion using time-scaling and resampling achieves the highest
speech quality and conversion accuracy when the F0 trans-
formation ratio nearly equals to 1.0 and its performance is
still comparable to the others even if changing the F0 trans-
formation ratio from 0.5 to 2.0.

2. STATISTICAL VOICE CONVERSION WITH
DIRECT WAVEFORM MODIFICATION WITH

SPECTRAL DIFFERENTIAL (DIFFVC)

DIFFVC consists of a training process and a conversion pro-
cess. In the training process, a joint probability density func-
tion of spectral features of a source speaker and the differen-
tial between the source and target speakers is modeled with
a differential GMM, which is directly derived from a tradi-
tional GMM. As the spectral features of the source and tar-
get speaker, we employ 2D-dimensional joint static and dy-
namic feature vectors Xt = [x⊤

t ,∆x⊤
t ]

⊤ of the source and
Y t = [y⊤

t ,∆y⊤
t ]

⊤ of the target consisting of D-dimensional
static feature vectors xt and yt and their dynamic feature vec-
tors ∆xt and ∆yt at frame t, respectively, where ⊤ denotes
the transposition of the vector. As shown in [27], their joint
probability density modeled by the GMM is given by

P (Xt,Y t|λ)

=
M∑

m=1

αmN
([
Xt

Y t

]
;

[
µ(X)

m

µ(Y )
m

]
,

[
Σ(XX)

m Σ(XY )
m

Σ(Y X)
m Σ(Y Y )

m

])
(1)

where N (·;µ,Σ) denotes a Gaussian distribution with a
mean vector µ and a covariance matrix Σ. The mixture
component index is m. The total number of mixture com-
ponents is M . λ is a GMM parameter set consisting of the
mixture-component weight αm, the mean vector µm, and the
covariance matrix Σm of the m-th mixture component. The
GMM is trained using joint vectors of Xt and Y t in the par-
allel data set, which are automatically aligned to each other
by dynamic time warping. Then, the differential GMM is
analytically derived from the trained GMM by transforming

the parameters. Let Dt =
[
d⊤
t ,∆d⊤

t

]⊤
denote the static and

dynamic differential feature vector, where dt = yt −xt. The
joint probability density function of the source and differen-
tial spectral features is shown as follows:

P (Xt,Dt|λ)

=
M∑

m=1

αmN
([
Xt

Dt

]
;

[
µ(X)

m

µ(D)
m

]
,

[
Σ(XX)

m Σ(XD)
m

Σ(DX)
m Σ(DD)

m

])
(2)
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µ(D)
m = µ(Y )

m − µ(X)
m (3)

Σ(XD)
m = Σ(DX)

m

⊤
= Σ(XY )

m −Σ(XX)
m (4)

Σ(DD)
m = Σ(XX)

m +Σ(Y Y )
m −Σ(XY )

m −Σ(Y X)
m . (5)

In the conversion process, the converted spectral feature
differential is estimated from the source speaker’s spectral
features based on the differential GMM in the same manner
as maximum likelihood estimation of speech parameter tra-
jectory with the GMM [10]. The voice timbre of the source
speaker is converted into that of the target speaker by directly
filtering the speech waveform of the input natural voice with
the converted spectral feature differential. Time sequence
vectors of the source features and the spectrum feature dif-
ferential are denoted as X = [X⊤

1 , · · · ,X⊤
T ]

⊤ and D =
[D⊤

1 , · · · ,D⊤
T ]

⊤ where T is the number of frames included
in the time sequence of the given source feature vectors. A
time sequence vector of the converted static features d̂ =

[d̂
⊤
1 , · · · , d̂

⊤
T ]

⊤ is determined as follows:

d̂ = argmax
d

P (D|X,λ) s.t. D = Wd (6)

where W is a transformation matrix to expand the static fea-
ture vector sequence into the joint static and dynamic feature
vector sequence [28].

3. INVESTIGATION OF THE F0

TRANSFORMATION TECHNIQUES FOR DIFFVC
FRAMEWORK

In this paper, we apply the following three F0 transforma-
tion techniques to DIFFVC: 1) F0 transformation based on
STRAIGHT vocoder (which is also used in the NU-NAIST
VC system for VCC 2016), 2) F0 transformation based on
residual signal modification using time-scaling and resam-
pling, and 3) F0 transformation based on waveform modifi-
cation. Figure 1 describes the conversion processes of the
DIFFVC methods using these techniques.

3.1. DIFFVC with F0 transformation using STRAIGHT
vocoder

Figure 1 (a) describes the conversion process of the DIFFVC
method with the F0 transformation based on STRAIGHT
vocoder. In this method, several acoustic features such as
F0, aperiodicity, and spectral envelope are extracted from the
source voice using STRAIGHT analysis framework [29]. For
the excitation conversion, F0 is transformed based on global
linear transformation in the same manner as the traditional
VC method [10]. The aperiodic components at all frequency
bins are shifted using band-averaged aperiodic differentials
between the extracted and converted ones as a global bias
term. Then, an F0 transformed source voice is synthesized
using full representation of STRAIGHT spectral envelope,

the transformed F0, and the transformed aperiodic compo-
nents. Finally, spectral envelope of the F0 transformed source
voice is converted using the converted mel-cepstrum differen-
tials with DIFFGMM in the same manner as the DIFFSVC.

This method is capable of converting the excitation pa-
rameters including not only F0 but also aperiodic compo-
nents as accurately as in the conventional VC. Therefore, it
is expected that the conversion accuracy of speaker identity
is almost equivalent to that of the conventional VC. On the
other hand, this method ruins the advantage of the DIFFVC
method, i.e., achievement of a high-quality converted voice
by avoiding the vocoding process. Consequently, this method
significantly suffers from quality degradation of the converted
voice caused by F0 extraction errors, unvoiced/voiced deci-
sion errors, lack of natural phase components, and so on.

3.2. DIFFVC with F0 transformation using residual sig-
nal modification

Figure 1 (b) describes the conversion process of the DIFFVC
method with F0 transformation based on residual signal mod-
ification. In this method, the F0 transformation is carried out
by directly modifying the residual signal. For the excitation
conversion, the residual signal composed of harmonic and
aperiodic components is extracted from the source voice with
inverse filtering based on the extracted mel-cepstrum. Then,
the time-scaling with WSOLA and resampling is performed
on the residual signal in order to transform F0. For instance, if
F0 is transformed to higher, the residual signal is expanded to
make its duration longer, followed by using down-sampling to
restore the length of the residual signal. If F0 is transformed
to lower, the residual signal is shrunk to make its duration
shorter, followed by using up-sampling to restore its length.
We further need to perform an additional process when de-
creasing F0, making high frequency components of the trans-
formed residual signal vanish. To reconstruct these vanished
frequency components, they are generated using a noise ex-
citation signal because the high frequency components of a
speech signal tend to be less periodic and be well modeled
with noise components. The F0 transformed source voice is
generated by filtering the resulting residual signal again using
the extracted mel-cepstrum. Finally, spectral envelope of the
F0 transformed source voice is converted using the converted
mel-cepstrum differentials with DIFFGMM in the same man-
ner as the DIFFSVC. Note that we set the F0 transformation
ratio to a constant value for each speaker pair.

In this technique, a part of natural phase components of
the source voice is well preserved because the F0 transfor-
mation is performed by directly modifying the residual sig-
nal without the vocoding process. Moreover, this technique
makes it possible to freely control the F0 transformation ra-
tio without changing DIFFGMM for the spectral differential
conversion because the original spectral envelope is also pre-
served through the F0 transformation. On the other hand, it is
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Fig. 1. Conversion process of several DIFFVC techniques.

possible to cause speech quality degradation of the converted
voice due to some essentially difficult processes, e.g., the dif-
ficulty of extracting the residual signal by perfectly removing
the effect of spectral envelope.

3.3. DIFFVC with F0 transformation using waveform
modification

Figure 1 (c) describes the conversion process of the DIFFVC
method with the F0 transformation using waveform modifica-
tion. In this technique, the F0 transformation using WSOLA
and resampling based on linear interpolation is directly ap-
plied to an original waveform of the source voice. Because
this direct waveform modification causes frequency warping,
spectral envelope also changes according to the F0 transfor-
mation ratio. Therefore, we need to use DIFFGMM capable
of converting such a frequency warped source voice. We
train the joint GMM using the F0 transformed source voices
and the natural target voices. For spectral conversion, the
converted voice is generated by filtering the F0 transformed
source voice with converted mel-cepstrum differential de-
termined with DIFFGMM derived from the corresponding

joint GMM. The F0 transformation ratio is set to a constant
value for each speaker pair. Note that this F0 transforma-
tion doesn’t cause any problems even when decreasing F0

because the high frequency components are generated with
aliasing caused by the linear interpolation and the resulting
spectral envelope is modeled with the joint GMM and also
DIFFGMM.

In this technique, there is no approximation error caused
by the vocoding process and the other processes, such as
inverse filtering. Therefore, it is expected that this method
achieves high-quality of the converted voice. Moreover, this
method is based on quite simple processes, and therefore, it
is easy to implement it to the real-time VC system [14]. On
the other hand, we need to separately train the joint GMM for
each different setting of the F0 transformation ratio because
spectral envelope of the F0 transformed source voice depends
on the F0 transformation ratio.
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4. EXPERIMENTAL EVALUATION

In this section, we evaluate performance of the following DIF-
FVC methods using different F0 transformation techniques:

• DIFFVC w/ STRAIGHT: The NU-NAIST VC system
submitted to the VCC 2016 [26] described in Sect. 3.1,

• DIFFVC w/ RES: The DIFFVC method with F0 trans-
formation based on the residual signal modification
[20] described in Sect. 3.2,

• DIFFVC w/ WAV: The DIFFVC method with F0 trans-
formation based on the waveform modification de-
scribed in Sect. 3.3.

4.1. Experimental conditions

We evaluated speech quality and speaker identity of the
converted voices to compare performance of the differ-
ent F0 transformation techniques in both intra-gender and
cross-gender conversions tasks. We used the English speech
database used in the VCC 2016. The number of evaluation
speakers was 10 including 5 females and 5 males, and the
number of combinations of source and target speakers was
90. The number of sentences uttered by each speaker was
216. The sampling frequency was set to 16 kHz.

STRAIGHT [12] was used to extract spectral envelope,
which was parameterized into the 1-24th mel-cepstral coef-
ficients as the spectral feature. The frame shift was 5 ms.
The mel log spectrum approximation (MLSA) filter [30] was
used as the synthesis filter. As the source excitation fea-
tures, we used F0 and aperiodic components extracted with
STRAIGHT [29]. The aperiodic components were averaged
over five frequency bands, i.e., 0-1, 1-2, 2-4, 4-6, and 6-8
kHz, to be modeled with the GMM.
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Fig. 3. Sound quality of converted voice.

We investigated F0 transformation ratios for all speaker
possible pairs from 10 evaluation speakers (i.e., 45 speaker
pairs in total) as shown in Figure 2, and selected 10 speaker
pairs in each F0 transformation ratio (0.5, 0.75, 1.0, 1.5, and
2.0) as the source and target speaker pairs. We used 162
sentences for training and the remaining 54 sentences were
used for evaluation. The speaker-dependent GMMs were sep-
arately trained for the individual source and target speaker
pairs. We performed MS-based postfilter for the converted
mel-cepstrum differential. The number of mixture compo-
nents for the mel-cepstral coefficients was 128 and for the
aperiodic components was 64. The number of subjects was 8
and they were not native English speakers.

Two subjective evaluations were conducted. In the first
test, we evaluated the speech quality of the converted voices
using a mean opinion score (MOS). The natural and converted
voice samples generated by three different DIFFVC meth-
ods were presented to subjects in random order. The subjects
rated the quality of the converted voice using a 5–point scale:
“5” for excellent, “4” for good, “3” for fair, “2” for poor, and
“1” for bad. The number of evaluation sentences in each sub-
ject was 128.

In the second test, conversion accuracy in speaker iden-
tity was evaluated. In this test, F0 transformation ratios were
set to 0.5, 1.0, and 2.0. A natural voice sample of the tar-
get speaker was presented to the subjects first as a reference.
Then, the converted voice samples generated by three differ-
ent DIFFVC methods for the same sentences were presented
in random order. The subjects selected which sample was
more similar to the reference natural voice in terms of speaker
identity. Each subject evaluated 90 sample pairs. They were
allowed to replay each sample pair as many times as neces-
sary.
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4.2. Experimental results

Figure 3 indicates the results of the MOS test for speech
quality. We can see a general tendency that speech qual-
ity degradation is caused by setting the F0 transformation
ratio to higher/lower values in all methods. When the F0

transformation ratio is set to around 1.0, DIFFVC w/ WAV
can achieve the highest speech quality. The speech quality
achieved by DIFFVC w/ WAV rapidly degrades when setting
the F0 transformation ratio to higher or lower values than 1.0.
On the other hand, DIFFVC w/ STRAIGHT and DIFFVC w/
RES tend to make such a quality degradation more gradually
compared to DIFFVC w/ WAV. Nevertheless, the speech
quality achieved by DIFFVC w/ WAV is still comparable to
the other methods even if setting the F0 transformation ratio
to around 0.5 or 2.0. As for a comparison between DIFFVC
w/ STRAIGHT and DIFFVC w/ RES, we can see that DIF-
FVC w/ STRAIGHT is slightly better than DIFFVC w/ RES
when setting the F0 transformation ratio to higher values (i.e.,
around 1.5 and 2.0). These results demonstrate that DIFFVC
w/ WAV outperforms DIFFVC w/ STRAIGHT and DIFFVC

w/ RES in terms of speech quality of the converted voices.
Figures 4 (a), (b) and (c) indicate the results of the prefer-

ence test for speaker identity. We can see a tendency similar
to that observed in the previous test on the converted speech
quality; i.e., 1) DIFFVC w/ WAV yields better conversion
accuracy for speaker identity than the other methods when
setting the F0 transformation ratio to around 1.0; 2) DIFFVC
w/ WAV is still comparable to the other methods even when
setting the F0 transformation ratio to around 0.5 and 2.0;
and 3) as for a comparison between DIFFVC w/ STRAIGHT
and DIFFVC w/ RES, DIFFVC w/ STRAIGHT yields better
conversion accuracy for speaker identity when setting the
F0 transformation ratio to around 0.5 and 2.0. Therefore,
DIFFVC w/ WAV outperforms the other methods in terms of
conversion accuracy for speaker identity as well.

These results suggest that DIFFVC w/ WAV is the best
approach to implementing F0 transformation to the DIFFVC
framework in terms of both converted speech quality and con-
version accuracy for speaker identity. Note that DIFFVC w/
WAV can also significantly reduce a computational cost in
conversion.

5. CONCLUSIONS

In this paper, we have investigated the effectiveness of sev-
eral F0 transformation techniques for statistical voice con-
version with direct waveform modification with spectral dif-
ferential (DIFFVC), such as 1) F0 transformation based on
STRAIGHT vocoder (the NU-NAIST VC system for VCC
2016), 2) F0 transformation based on residual signal modi-
fication, and 3) F0 transformation based on waveform mod-
ification. We have compared their performance in terms of
speech quality of the converted voices and conversion ac-
curacy for speaker identity. The experimental results have
demonstrated that 1) the F0 transformation method based on
waveform modification achieves significantly higher speech
quality and conversion accuracy compared to the other meth-
ods when setting the F0 transformation ratio close to 1.0, and
2) this method still achieves comparable performance to the
other methods in terms of both speech quality and conversion
accuracy for speaker identity even when setting the F0 trans-
formation ratio to higher or lower (e.g., around 2.0 or 0.5).

Thanks to the DIFFVC method using F0 transforma-
tion based on waveform modification, voice conversion per-
formance has been significantly improved for speaker pairs
whose F0 ranges are similar to each other but the performance
is still comparable to the traditional conversion method using
vocoder for other speaker pairs whose F0 ranges are quite
different from each other (e.g., in cross-gender conversion).
In future work, we plan to improve performance of the F0

transformation techniques in cross-gender conversion.
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