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ABSTRACT

In this paper we propose a framework for building a full-
fledged acoustic unit recognizer in a zero resource setting,
i.e., without any provided labels. For that, we combine an it-
erative Dirichlet process Gaussian mixture model (DPGMM)
clustering framework with a standard pipeline for supervised
GMM-HMM acoustic model (AM) and n-gram language
model (LM) training, enhanced by a scheme for iterative
model re-training. We use the DPGMM to cluster feature vec-
tors into a dynamically sized set of acoustic units. The frame
based class labels serve as transcriptions of the audio data
and are used as input to the AM and LM training pipeline.
We show that iterative unsupervised model re-training of this
DPGMM-HMM acoustic unit recognizer improves perfor-
mance according to an ABX sound class discriminability task
based evaluation. Our results show that the learned models
generalize well and that sound class discriminability bene-
fits from contextual information introduced by the language
model. Our systems are competitive with supervisedly trained
phone recognizers, and can beat the baseline set by DPGMM
clustering.

Index Terms— acoustic unit discovery, Dirichlet process,
unsupervised learning, unsupervised speech recognition, zero
resource

1. INTRODUCTION

We speak of a zero resource scenario in the speech processing
domain, when labeled training data and knowledge about the
target language are not available. Current technology can not
yet imitate capacities that are natural to humans to robustly
learn acoustic and language models in an unsupervised way.
Recently, evaluations such as the zero resource speech chal-
lenge [1] specialize in tackling this demanding task by asking
the following question: Can we learn a whole language from
scratch by deploying adaptive machine learning algorithms?
The absence of supervision makes it difficult to apply ma-
chine learning methods that are commonly used to build state-
of-the-art HMM based speech processing systems. There has
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been work on estimating popular feature transformations
without prior labels at hand [2, 3]. Much work has been done
on training and adapting speech recognizers with little to no
supervision [4, 5, 6]. Usually, automatic transcriptions for
new adaptation data are produced using speech recognizers
that were initialized on very small amounts of supervised
data. Transcribing and re-training is normally repeated over
multiple iterations to benefit from gradually improved mod-
els. Initial transcriptions can also be generated with only
segmental tokenizers at hand [7]. Where the underlying
sound inventory of the data is unknown, works such as [8, 9]
perform acoustic unit discovery and modeling.

Works like these raise an interesting question: Can we
go one step further and build a state-of-the-art acoustic unit
recognizer for an unknown language given merely the audio
data without any provided labels or other linguistic knowl-
edge? Answering this question demands solving the tasks of
(1) finding an inventory of the underlying sounds of the target
language (2) modeling these sounds appropriately, preferably
along with contextual linguistic information that supports a
recognizer in handling ambiguity. Possible applications of
such recognizers range from automatic transcription for lan-
guage analysis and preservation, keyword discovery and topic
classification to providing a basis for developing functional
services for natural human-machine interaction.

Machine learning approaches to the first task are pattern
matching [10, 11] on raw audio data and unsupervised sound
unit detection [12]. These techniques have been successfully
applied to solve tasks such as spoken term detection [13],
topic segmentation [14] or document classification [15].
Bayesian models such as the Dirichlet process Gaussian
mixture model (DPGMM) are a good choice for dealing with
the problem of unknown model complexity. Chen et al. [16]
cluster speech features by inferring a DPGMM and demon-
strate its suitability for automatic detection of sound classes
in untranscribed data. Their work is the best-performing con-
tribution to the zero resource speech challenge 2015 [1]. We
demonstrated in previous work [17, 18] that it is possible to

GlobalSIP 2016



unsupervisedly learn various feature transformations on auto-
matically generated labels, and that these transformations can
be used to produce feature vectors that considerably improve
the DPGMM clustering performance.

In this work we further expand our unsupervised learn-
ing scheme in the zero resource scenario of our previous
studies. We propose to build a full-fledged acoustic unit rec-
ognizer without prior labels. For that, we combine our itera-
tive DPGMM clustering framework with a standard pipeline
for supervised GMM-HMM acoustic model (AM) and n-
gram language model (LM) training, along with a scheme
for iterative model re-training. Specifically, we sample a
DPGMM to find a dynamically sized set of acoustic units that
are optimized with respect to sound class discriminability.
These acoustic units are used to initialize a context dependent
speaker adaptive AM and an acoustic unit based n-gram LM.
Similar to [7, 19] we follow an iterative approach attempting
to gradually improve the trained models by decoding and re-
training, but we let the DPGMM sampler decide the amount
and structure of the used sounds.

With our proposed framework it is possible to build a
DPGMM-HMM acoustic unit recognizer that is competitive
with supervisedly trained phone recognizers, according to
the performance on the ABX sound class discriminability
task [20]. The ABX test based evaluation measures class
discriminability of posteriorgrams. This allows a direct com-
parison of the decoding quality with the clustering quality
of the DPGMM. We show that our DPGMM-HMM recog-
nizer can beat the baseline set by our previous studies on
DPGMMs. We also show that the model re-training helps im-
prove performance even over multiple iterations. Our results
indicate that the contextual information encapsulated in the
LM considerably helps the sound class discriminability. Use-
ful models can be unsupervisedly learned even on minimal
amounts of data. We argue that by utilizing the DPGMM-
HMM framework it is possible to build a state-of-the-art
acoustic unit recognizer without any prior supervision.

2. ACOUSTIC UNIT DISCOVERY

To solve the task of acoustic unit discovery, we utilize a
DPGMM sampler to cluster extracted speech features into
various sound classes. The set size is determined dynami-
cally by the Bayesian approach. Our method is based on [16],
but has been modified by us in previous work to incorporate
automatically estimated linear feature transformations which
proved to be very helpful in constructing good features for
boosting the clustering quality [17, 18]. Because many useful
feature transformations need labels for estimation, we use a
multi-staged clustering framework that automatically finds
frame-based class labels in a first run of clustering standard
speech features, estimates feature transformations to trans-
form these features and re-clusters the transformed input in a
second run. The clustering scheme is depicted in Figure 1.
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Fig. 1. Scheme of the DPGMM-HMM acoustic unit recogni-
tion framework. x; -- -z, denotes the input feature vectors.
The model training for acoustic unit recognition is iterative,
where the models of iteration ¢« = 1 are trained on the initial
labels from the acoustic unit discovery step, and the models
of iteration i € {2, ..., 4mqs are trained on the hypotheses
of iteration ¢ — 1. pj ---p, denotes the posteriorgrams af-
ter DPGMM sampling. p? - - - p’, denotes the posteriorgrams
after decoding in iteration i.

2.1. Dirichlet process Gaussian mixture model

DPGMMs (also known as infinite GMMs) extend finite mix-
ture models by the aspect of automatic model selection:
The model finds its complexity automatically given the data.
Inference is typically sample based using a Markov chain
Monte Carlo (MCMC) scheme such as Gibbs sampling. The
sampler used here alternates between a non-ergodic restricted
Gibbs sampler and a split/merge sampler to form an ergodic
MCMC sampler. A super-cluster sampler groups similar
clusters into super-cluster groups g, given a cluster similarity
measure. The merge step of the split/merge sampler can be
conditioned on g to only consider merge candidates within
the same super-cluster that the current sample belongs to.
For more in-depth informations regarding the used DPGMM
sampler, please refer to [16, 21].

2.2. Unsupervised speech feature transformation

Speech feature transformations used by our framework help
to project feature vectors into a more suitable sub-space
for sound class discrimination by feature de-correlation
and speaker adaptation. To estimate various transforma-
tions we train an AM by exploiting a standard pipeline for
supervised training. During the course of the training we



learn transformations via linear discriminant analysis (LDA),
estimating maximum likelihood linear transforms (MLLT)
and using feature-space maximum likelihood linear regres-
sion (fMLLR). LDA helps to minimize intra-class discrim-
inability and maximize inter-class discriminability of the
speech features and to enable dimensional reduction of high-
dimensional stacked feature vectors. The state-dependent
MLLTs maximize the likelihood of the target data. fMLLR
helps to capture inter-speaker variability in speaker depen-
dent transforms and to generate speaker independent state
distributions instead.

2.3. Two-stage clustering

We produce automatic labels by sampling an initial DPGMM
given standard feature vectors with their derivatives. The out-
put consists of generic class labels and the hypothesized class
membership of every speech frame. Each class is simply
named with the numeric ID of the Gaussian that most likely
produces the respective feature vector.

The frame-wise labels serve as basis for the subsequent
transformation estimation. We collapse the labels for each
utterance to emulate a more natural textual reference by com-
pressing all subsequent tokens of the same type to a single
token. We initialize an AM by context-independent mono-
phone training. Then we subsequently train context depen-
dent tri-phones on untransformed standard features. During
this model training we automatically learn LDA transforma-
tions using the acoustic states as classes. The MLLTs are
learned given the initialized HMMs, and fMLLR is based on
alignments with speaker-independent features.

3. ACOUSTIC UNIT RECOGNITION

The automatic labels generated with the method described
above can be used to train acoustic and language models fit
for decoding. This step uses the same standard pipeline for
supervised training as above, now with the objective to de-
code the target data with the resulting model in combination
with the LM. The acoustic unit recognition scheme is depicted
in Figure 1. The data sets we use in this zero resource setting
are the only resources we have for training and testing, thus
the entire training and decoding pipeline is designed for x-
fold cross-validation.

3.1. Training

The acoustic model training makes use of automatic tran-
scriptions that are produced by collapsing the class label
output from the multi-stage DPGMM clustering. The tran-
scriptions are used to initialize context and speaker inde-
pendent GMM-HMM monophone models, see Figure 2.
Multiple iterations of increasingly complex training fol-
lowed by label writing result in speaker adaptively trained
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Super-clusters:

Fig. 2. Left: Scheme of a sampled DPGMM. Super-clusters
are visualized with different line styles. Each Gaussian rep-
resents one sound class, denoted by a generic ID. Right:
DGPMM-HMMs trained on the DPGMM label output.

context-dependent tri-phones. The pre-processing produces
LDA+MLLT+fMLLR transformed feature vectors.

A commonly used topology for acoustic modeling is left-
to-right 3-state HMMs with or without skip states because of
its suitability to model phone inventories crafted by linguists.
It is not guaranteed, however, that automatically discovered
acoustic units share the temporal properties of phones in the
linguistic sense. Thus, our setup is designed to also operate
with alternative HMM topologies.

The language model training produces an n-gram LM on
the same automatic transcriptions, where the transcriptions
are used as-is, i.e., no additional filtering or cleaning is per-
formed prior to training. The LM is based on the class labels,
thus captures the phonotactics of the data, given the generic
acoustic units.

The DPGMM sampler used to generate the automatic la-
bels can sample labels that group several clusters according
to some cluster similarity measure. These super-cluster labels
can be used as an alternative to the normal cluster labels, thus
effectively reducing the amount of potential acoustic units to
be trained. Making use of this reduced set of classes makes
sense when the amount of clusters found during DPGMM
sampling is considerably higher than the size of commonly
used phone or sound inventories.

3.2. Decoding

The decoding is performed with the generic acoustic unit
based AM and LM, and in turn produces acoustic unit based
hypotheses, i.e., essentially resembling a “phone” recognizer.
Because naturally we do not have a development data set at
hand, we use default values for all parameters that might be
subject to tuning, such as beam sizes and model weights.

3.3. Iterative re-training

A first system sys; is initialized with the help of the transcrip-
tions that were produced by formatting the DPGMM output.
By default, we iteratively re-train AM and LM simultaneously
by using the hypotheses produced with system sys;_; to build



system sys; in iteration ¢ € {2, ..., imqs }- The iterations af-
ter building system sys; can alternatively be restricted to one
model type, i.e., either the AM or the LM is the sole subject
of iterative re-training.

It is straightforward to replace the transcriptions of the
previous training step with the hypotheses. Afer each it-
eration, we evaluate the system performance by extracting
frame-wise acoustic unit posteriorgrams and measuring their
ABX sound class discriminability.

4. EXPERIMENTS

4.1. Data

We use the official data set of the Interspeech zero resource
speech challenge [1] for all our experiments, which contains
two separate data sets of pure speech for American English
(4h 59min) and Xitsonga (2h 29min), a southern African
Bantu language. Each segment contains non-overlapping
speech of exactly one speaker and is without noise or pauses.
The English data is extracted from the Buckeye corpus and
consists of conversational speech. The Xitsonga data is an ex-
cerpt of the NCHLT corpus and is comprised of read speech.

4.2. Evaluation

The evaluation metric we use to measure the cluster quality
and the decoding quality is the ABX phone discriminabil-
ity between phonemic minimal pairs [20], a method which
is related to the ABX task used in psycho-physics [22]. The
provided toolkit allows the easy evaluation of posteriorgrams
which we can extract after DPGMM clustering as well as after
decoding.

Each acoustic unit being found via DPGMM clustering
(and used for acoustic modeling for the decoding approach)
is considered a phone in the context of the evaluation. We
compute GMM posteriorgrams for each speech frame after
clustering as described in Section 2 and acoustic unit poste-
riorgrams after decoding as described in Section 3, and score
them in the same manner. Both types of posteriorgrams share
the same structure due to the fact that the sound units of the
AM are identical with the DPGMM classes.

Let A and B be speech representations of sound cate-
gories a and b. The ABX phone discrimination accuracy is

c(a,b) =

MRr T SIS

lal -6l - (Jal AEa Beb Xca\{A)}

(8aca,x)<aB,x) + §5d(A,X):d(B,X)) (1
where § is an indicator function and d(-, -) is the dynamic time
warping (DTW) distance defined over vectors of frame-based
features (in this case posteriors). As in Schatz et al. [20],

we use the Kullback-Leibler divergence to compute the DTW
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English Xitsonga
| Features within | across | within [ across
DPGMM ([16]) 10.8 16.3 9.6 17.2
DPGMM ([18]) 10.6 15.7 8.4 12.2
DPGMM-HMM (sup.) | 12.5 16.6 6.7 11.2
DPGMM-HMM 11.1 15.1 8.2 11.6
Table 1. The baseline results provided by the DPGMM

clustering (DPGMM), the top-line result provided by the su-
pervisedly trained phone recognizer, and the optimal results
for each condition given our proposed setup (both DPGMM-
HMM).

distances. Our scores are the error rates within and across
speakers. The rates are averaged over all contexts for a given
pair of central phonemes and then over all pairs of central
phonemes.

4.3. Setup

For the feature vector clustering via DPGMM sampling, we
use the same initialization and parameters than in [17, 18].

We use the Kaldi speech recognition toolkit [23] to ex-
tract PLP speech feature vectors for a frame length of 25
milliseconds and frame shift of 10 milliseconds. Mean vari-
ance normalization (MVN) and vocal tract length normaliza-
tion (VTLN) is applied. All AMs used in our framework are
likewise trained with Kaldi, following a standard scheme for
speaker adaptive training (Kaldi recipe s5). All parameters
that can be tuned are set to default values. To form the in-
put for LDA estimation, we stack the standard PLP features
with a context of 4, meaning that the 4 left and 4 right fea-
ture vectors are stacked on top of the current vector, which is
the center vector. The LDA output dimensionality is 20 for
feature transformation prior to DPGMM clustering, and set to
the default value 40 for the decoding. We use a either a mod-
ified 3-state HMM topology with a skip from the first state to
the next HMM, or a 1-state HMM topology.

To train the n-gram LMs for our experiments, we use the
SRILM toolkit [24] with Witten-Bell discounting [25] and no
pruning. We set n = 4 for all decoding experiments.

4.4. Clustering transformed speech features

The baseline for the DPGMM based feature vector clustering
performance was set by Chen et al. [16], which won track one
of the zero resource speech challenge 2015 [1]. This system
has been outperformed by our clustering setup using feature
transformations as described in our previous work [17, 18].
We found that PLP feature vectors are consistently leading to
a higher clustering quality than MFCC feature vectors. We
also found that the stacking context parameter ¢ = 4 prior to
LDA transformation and LDA output dimensionality d = 20
are good values to work with. With the application of LDA
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Fig. 3. Error rates within and across speakers for both languages in dependency of the model training iteration. The black
horizontal line marks the baseline set by the best DPGMM clustering. AM re-training and LM re-training denote systems with
exclusively re-trained AM or LM, respectively. /-state HMMs denotes systems that use the single state topology instead of the
default. Systems have been trained either on the normal DPGMM label output or on the super-cluster labels.

we were able to produce feature vectors that considerably
helped the DPGMM clustering process to find better clusters.
Further, the transformations learned with fMLLR during the
speaker adaptive training helped boost the discrimination ca-
pabilities across speakers. The details of these findings can be
found in [17, 18]. The performance of Chen et al.’s and our
setup is listed in Table 1.

4.5. Decoding with acoustic units

We trained an AM and a 4-gram LM given the classes dis-
covered during the DPGMM clustering. Because training
and test data are identical in our scenario, we use 12-fold
cross-validation for training the models for decoding. The
cross-validation ensures that the measured performance is
an indicator of how well the learned models generalize, be-
sides showing that they are generally capable of representing
the training data. The models are used to decode the cross-
validation left-out portion of the data. The decoding hypothe-
ses were subsequently used to re-train the models for another
iteration of decoding. This was done multiple times to mea-
sure a potentially positive effect of iterative unsupervised
re-training on the decoder performance.

To get a top-line performance for the decoding with
acoustic units, i.e., the kind of performance we can expect
if we had an optimal set of acoustic units and (near) perfect
transcriptions to learn models, we also trained a normal AM
and phone-based 4-gram LM with the same setup given the
original references and decoded the target data with 12-fold
cross-validation. All results are listed in Table 1.

The performance of the DPGMM-HMM acoustic unit
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recognizers is depicted in Figure 3. Even though a general
tendency to convergence is not observable, one can see that
multiple iterations of model re-training tend to have a positive
effect. The error across speakers drops for the recognizers for
both languages even after 3 or more iterations, whereas the
positive effect diminishes more rapidly within speakers.

The acoustic unit recognizers are competitive when com-
pared to the supervisedly trained phone recognizers. For En-
glish, our proposed setup can even beat the supervised system
according to ABX discriminability within speakers.

The posteriorgrams after decoding start off with a higher
discriminability error than the posteriorgrams after DPGMM
sampling, which were used to generate the labels for the de-
coder training in the first place. In other words, a performance
loss is observable by attempting to train more complex mod-
els. However, a steady performance improvement is observ-
able for the discriminability across speakers, while the error
rate within speakers remains relatively stable. We take this
as an indicator that the models do have the capacities of still
learning more from the data.

4.6. Using super-cluster labels

The DPGMM sampler can sample labels that group several
clusters according to some cluster similarity measure, in this
case the J-Divergence [26]. We used the super-cluster labels
as an alternative to the normal cluster labels to effectively
reduce the amount of potential acoustic units. The number
of clusters found during DPGMM sampling usually is in the
hundreds, whereas the sampled super-clusters are in the range
of tens, raising the hope that they resemble more phone-like



units. As can be seen in Figure 3 we indeed observed a per-
formance gain when training the models on super-cluster la-
bels, supporting our assumption that the super-clusters might
be more suitable to describe the target data.

4.7. Modeling sounds with single states

The fact that we were not able to beat the DPGMM cluster-
ing in the ABX task lets us assume that the acoustic units
we found might not quite resemble phones as defined by lin-
guistics. Thus we also conducted decoding experiments with
1-state HMMs instead of 3-state HMMs. By simplifying the
models in this way we observed a considerable performance
gain. Apparently, the data can be represented more accurately
with chained single state HMMs. We take this as a sign that
the found units are potentially too short to be modeled accu-
rately with 3 states.

The posteriorgrams after decoding with 1-state HMMs
outperform the DPGMM posteriorgrams in all but the within
speaker discriminability test for English. It is also notewor-
thy that the model training seems to saturate after fewer it-
erations than before, possibly due to the reduced complexity
of the AM. We now see optimal performance after the third
iteration at the latest. The proposed system also clearly out-
performs the supervisedly trained phone recognizer for En-
glish by showing a relative improvement of 9% to 11% in
sound class discriminability performance. For Xitsonga, the
performance of the automatic sound units is fairly close to the
performance of the supervisedly trained recognizer.

4.8. Selective re-training

We conducted experiments to analyze the isolated effects of
AM and LM re-training. In two lines of experiments we only
re-trained one of the two model types each. The results that
are depicted in Figure 3 allow conclusions regarding the im-
portance of the amount of available data: For English we
see an improvement when simultaneously re-training AM and
LM. If both model types are re-trained exclusively, with the
other model kept fix after iteration 1, the performance remains
suboptimal. If the same test is done for Xitsonga however,
one can see that the AM tends to deteriorate very quickly
with new iterations of re-training. This is a strong indica-
tor that the amount of training data is insufficient to reliably
estimate models with multiple iterations. The LM re-training
seems more robust but also suffers from multiple iterations.
The combined re-training of both model types yields subopti-
mal performance compared to re-training the LM exclusively.
The deteriorating AM is simply overpowering the benefits of
an LM.

5. CONCLUSION

We proposed to build an acoustic unit recognizer without any
provided labels by utilizing a Bayesian DPGMM sampler to
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unsupervisedly discover acoustic units in the target data for
subsequent acoustic and language model training on automat-
ically generated labels. The resulting DPGMM-HMM acous-
tic unit recognizer was used to solve the ABX sound class dis-
criminability task. Multiple iterations of decoding and model
re-training proved to be suitable to boost performance. We
showed that the automatically discovered acoustic units seem
to differ from phones in the sense that they seem generally
shorter. We demonstrated that the contextual informations
modeled by the LM considerably help discriminating sounds
and that the sound class discriminability after DGPMM clus-
tering can be outperformed by introducing such contextual
knowledge. With our proposed framework it is possible to
build a DPGMM-HMM acoustic unit recognizer that is com-
petitive with supervisedly trained phone recognizers. Use-
ful models can be unsupervisedly learned even on minimal
amounts of data. A recognizer build in this way without any
prior supervision can serve as basis for further and more so-
phisticated system development. In future work we plan to
utilize such initialized systems to also infer lexical knowledge
from the data to boost recognition performance and to enable
automatic generation of lexica for new languages.
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