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コクレオグラムとスペクトログラムを用いた深層学習音声認識
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あらまし 本論文では、対数メル尺度やスペクトログラムにコクリオグラムを加えた特徴ベクトルを用いた、Deep
Neural Network（DNN）, Convolutional Neural Network（CNN）による音声認識システムを提案する。TIMIT音素
認識タスクにおいて、スペクトログラム―コクリオグラムを用いた CNNで、スペクトログラムのみを用いた、CNN
に対して 8.2%、DNNに対して 19.7%の性能向上を示した。
キーワード 深層学習：素性組み合わせ、コクリオグラム
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Abstract This paper proposes various possibilities to combine cochleogram features with log-mel filter banks
or spectrogram features within the DNN and CNN framework. Performance was evaluated on TIMIT phoneme
sequence recognition task. The best accuracy was obtained by high-level combination of two dimensional
cochleogram-spectrogram features using CNN, achieved up to 8.2% relative phoneme error rate (PER) reduction
from CNN single features or 19.7% relative PER reduction from DNN single features.
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1. Introduction
Deep neural network - HMM (DNN-HMM) hybrid systems

have been proven to be superior compared to the conven-
tional GMM-HMM model. As DNNs are less sensitive to
data correlation and the increase in the input dimensionality
than GMMs, they allow us to exploit a richer set of features.
Recent research has also shown that auditory features based
on gammatone filters are promising to improve robustness of
ASR systems [1]. Another alternative to DNNs is the use
convolutional neural networks (CNNs). CNNs with two di-
mensional log-mel filter banks or spectrogram input features
have shown improvements over DNNs [2]. Although, CNN
framework has shown to give many advantages, various fea-
tures and combination within CNN framework have not been
widely explored.

In this work, we attempt to explore the two dimensional
features derived from gammatone filter, which are also called
cochleograms within NN-HMM framework. Furthermore, we
also investigated the possibilities to combine cochleogram
features with spectrogram features. In particular, we com-
bine within low and high levels of CNNs, which we call low-
level and high-level feature combination. As comparison, we
also construct the similar configuration with DNN in which
the features were vectorized into one dimensional features.

2. Neural Networks
DNN is a neural network which has many hidden layers

between input and output layers. Compared to traditional
neural networks with one layer, DNNs have a greater capac-
ity to learn and generalize to more complex datasets [3].

Another type of neural networks is CNN. CNNs are neural
networks that combine values between local receptive fields,
shared weights, and perform sub-sampling. In CNN, the con-
volutional layers consist of multiple filters which convoluted
across a given input or previous layer output and the pooling
layers try to sub-sample the value from certain area. Using
convolution and pooling, CNN has spatial-temporal connec-
tivity and local translation invariance for the given input.

2. 1 Cochleogram
In speech recognition, spectrogram is the widely used fea-

tures obtained via fast Fourier Transform. In this work, we
also explore gammatone-based filter. Cochleogram construct
a time-frequency representation of the input signal to mimic
the components from the cochlea of human hearing system.
To construct a cochleogram, gammatone filter is used:

g(t) = atn−1 cos (2πfct + φ)
e2πbt

(t � 0), (1)

where a defines the value for amplitude, n defines the order
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of the filter, b defines the bandwidth, fc is the central fre-
quency (in kHz) and φ for phase (which usually we set into
0). According to [4], b = 1.019 ∗ 24.7 ∗ (4.37 ∗ fc + 1). In our
experiments, we down-sample the frequency into frequency
bands with equivalent rectangular bandwidth (ERB) scale.

3. Feature Combination

図 1 a) Low level feature combination for DNN b) High level
feature combination for DNN

In low level features combination, we convert the speech
into a 2D feature representation. In our case, we convert the
speech into mel-filterbank spectrogram and cochleogram. In
this approach, we do concatenation and the result is matrix
features xcomb = [xspec; xcoch] ∈ R

2f×t. Figure 1.a shows
the detail for the DNN with low level feature combination.
We vectorized the matrix features into 1D vector R

2ft, then
used a using Stacked Denoising Autoencoder (SDAE) to pre-
train the weights W = [W1, ..., Wk] and followed by finetun-
ing. To apply low-level feature combination for the CNN,
we change the multiple fully connected layers into multiple
convolutional and max-pooling layers respectively and feed
it into a fully connected hidden layer with the softmax layer.

In high level feature combination, we split our model into
2 different stacks of hidden layers. For DNN models in Fig-
ure 1.b, we separate input features and build two stacks of
several hidden layers. On the left stacks and right stacks, the
weight parameters [W spec

1 , .., W spec
j ] and [W coch

1 , .., W coch
k ]

are trained only with spectrogram and cochleogram features
respectively. In the end, we concatenate hspec

j and hcoch
j into

hfull
1 and put softmax layer. The same architecture is also

applied in the high-level CNN model by replacing each fully
connected layers with convolution and max-pooling layers.

4. Experimental Setup
4. 1 Corpus and Front-End
Phone recognition experiments were perfomed on the

TIMIT dataset. We extracted the context window by us-
ing a 25-ms Hamming window with 10-ms step size. Then,
the spectrogram and cochleogram speech features are gen-
erated by a Fourier-transform-based filter-banks and gam-
matone filter. In our experiments, we set gammatone filter
parameter into 29 frequency bands from 20 Hz to 20.000
Hz, into equivalent rectangular bandwidth (ERB) scale. For
each moving window result, we average across time domain
then we apply 14 context window to the left and right. For
mel-spectrogram features, we also use 29 frequency bands.
Following the TIMIT s5 recipe in Kaldi, the acoustic model
consists of 1943 tied triphone states.

4. 2 Framework
For DNN low-level feature combination, we use 6 fully con-

表 1 Comparisons of DNN and CNN using different features in
terms of phoneme error rates on TIMIT core test set.

Features
PER(%)

DNN CNN
Mel 26.58 23.24
Coch 26.78 23.65
Mel+Coch (Low) 26.02 22.61
Mel+Coch (High) 24.89 21.34

nected hidden layer and softmax layer on the top. For DNN
high-level feature combination, we use 2 different stacks of 5
fully connected hidden layer, 1 fully connected for transition
between high level feature with softmax layer, and softmax
layer on the top. For CNN low-level feature combination, we
use 2 convolution and pooling layer and 2 fully connected hid-
den layer with softmax layer on the top. For CNN high-level
feature combination, we use 2 different stacks of 2 convo-
lution and pooling layer and 2 fully connected hidden layer
with softmax layer on the top.

5. Experiment Results
Table 1 shows performance comparisons of various systems

in terms of phoneme error rates (PER) on TIMIT core test
set. As can be seen, both low-level and high-level features
combination within DNN and CNN framework provided im-
provements in recognition accuracy. The best performances
are 21.34% which was obtained by high-level combination
of two dimensional cochleogram-spectrogram features within
CNN framework.

Overall, the combination of spectrogram and cochleogram
features provided consistent improvements over single fea-
tures. We hypothesize that this may be because cochleogram
with ERB scale of the gammatone filter could support the
better representation at lower frequency. Therefore, combin-
ing the strengths of spectrogram and cochleogram features
into a single system, lead to a more accurate final result.

6. Conclusion
In this paper, we explored the use of cochleogram features

in the deep-learning framework. Furthermore, we also inves-
tigated various possibilities of cochleogram and spectrogram
feature combination. The results reveal that 2D features
with CNN performed better than 1D features with DNN.
The best accuracy was obtained by high-level combination
of two dimensional cochleogram-spectrogram features using
CNN, achieved up to 8.2% relative PER reduction from CNN
single features or 19.7% relative PER reduction from DNN
single features.
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