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Abstract
This study presents a psycholinguistically motivated evaluation
method for phoneme classifiers by using non-categorical per-
ceptual data elicited in a Japanese sibilant matching 2AFC task.
Probability values of a perceptual [s]-[S] boundary, obtained
from 42 speakers over a 7-step synthetic [s]-[S] continuum,
were compared to probability estimates of Gaussian mixture
models (GMMs) of Japanese [s] and [S]. The GMMs, trained on
the Corpus of Spontaneous Japanese, differed in feature vectors
(MFCC, PLP, acoustic features), covariance matrix types (full,
tied, diagonal, spherical), and numbers of mixtures (1-20). Us-
ing ten-fold cross validation, it was found that GMMs trained
on MFCC features had the best sibilant classification accura-
cies (87.4-90.4%), but their correlations with human perceptual
data were non-conclusive (0.35-0.98). Acoustic feature-based
GMMs with tied covariance matrices had near human-like syn-
thetic stimuli perception (0.957-0.996), but their classification
performance was poor (71.3-80.4%). Models trained on per-
ceptual linear prediction (PLP) features were on par with the
acoustic feature-based models in terms correlation to the per-
ceptual experiment (0.884-0.995), while losing slightly on clas-
sification performance (86.1-88.9%) compared to MFCC mod-
els. Across the board correlation tests and mixture-effect mod-
els confirmed that GMMs with better sibilant classifying per-
formance produced more human-like probability estimations on
the synthetic sibilant continuum.
Index Terms: perception, Japanese sibilants, synthetic contin-
uum, ASR-HSR comparison

1. Introduction
Studies in both human and automatic speech recognition
(HSR, ASR) are concerned with the problem of how linguistic
information—in most of the cases phonemes and words—can
be extracted from the acoustic speech signal. It is a well-known
fact that despite the trivial similarity of the abstract goals, the
two fields of HSR and ASR greatly diverge in terms of fo-
cus and methodology [1], [2], [3]. Traditional ASR research
represents a holistic, performance-oriented approach to speech
recognition. Higher accuracy and lower resource footprints are
the ends that justify any means. Other than human-like recogni-
tion accuracy, psycholinguistic or perceptual aspects of speech
recognition are usually not of direct concern in ASR systems.
HSR studies, on the other hand, have a rather narrow focus, typ-
ically addressing some specific aspects of speech recognition,
such as perceptual similarity of phonemes [4], temporal char-
acteristics of recognition [5], or phonotactic effects [6]. Unlike
ASR approaches, HSR studies do not aim to present an exhaus-
tive explanation of the whole speech recognition process.

Despite all the palpable differences between ASR and HSR
approaches, a convergence would be beneficial for both fields.
For HSR studies, a comprehensive working model could be a

proof of concept for psycholinguistic models. As for ASR,
greater psychological plausibility, that is proximity to human-
like recognition concerning various aspects of the process, has
the promise of eventually leading to better recognition accura-
cies. In order to bring the two fields closer together, however,
the differences have to be assessed first. Comparisons have been
carried out among others in terms of recognition accuracy [7],
effects of training data [1], reaction time [8], and phoneme con-
fusion [9]. The current study aims to provide an addition to the
ASR-HSR literature by comparing human and machine perfor-
mance in a sibilant discrimination task—using synthetic sibilant
continuum. The sibilant discrimination task was chosen to keep
both human experiments and statistical models simple. Since
sibilants can be reliably identified by spectral cues, their per-
ception can be modeled with context independent models, such
as Gaussian mixture models (GMMs). The human data for this
study was obtained in a perceptual experiment using a 7-step
[s]-[S] continuum as stimuli. The GMM classifiers were trained
over the Corpus of Spontaneous Japanese.

The current research raised the following questions. First,
do GMM phoneme classifiers trained on Japanese utterances
‘perceive’ the synthetic stimuli from the human experiment as
humans do? Concretely, do probability scores estimated by sta-
tistical sibilant classifiers correlate with probability scores from
the human experiment? Second, what settings and features of
the statistical models produce closer proximity to human per-
ception? Third, would closer resemblance to human percep-
tual characteristics entail better classification performance? In
other words, can recognition accuracies be predicted based on
how close the resemblance to human performance in the sibilant
classification task is?

2. Sibilant perception by humans
Sibilants are a relatively deeply researched topic in Japanese
phonetics [10], [11], [12], [13], [14]. Japanese has two voice-
less sibilants: the alveolar [s] and the alveo-palatal [C] (for
brevity transcribed here as [S]). While Japanese and English [s]
sounds are very similar, the Japanese [S], differently from its
English counterpart, lacks lip rounding and pronounced further

Figure 1: Spectral envelopes for the [s]-[S] continuum.
kHz
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back in the mouth [15]. As for perception, English listeners
tend to identify sibilants by their spectral characteristics [16],
and rely to a significantly lesser extent on formant transitional
cues [17], [18]. In Japanese, formant cues weigh in more heav-
ily than spectral ones [10]. Since sibilants can only appear in the
onset constituent of the Japanese syllable, transitional cues are
readily available. Vowel devoicing, however, can create forms
in which sibilants end up in non-vocalic context, for example,
at the end of the word (e.g., /desu/→[desu

˚
]→[des] COPULA).

Despite the strong reliance on transitional cues, Japanese listen-
ers have no problem identifying sibilants in these non-vocalic
environments.

2.1. Stimuli

A 7-step [s]-[S] continuum (S1-S7) was synthesized and ap-
pended as the final consonant to the carrier phrase /kono ka-/.
The carrier phrase was obtained by truncating a natural utter-
ance of [kono kasu tte nani]. The synthetic stimuli ranged be-
tween [kono kas] ‘this residue’ and [kono kaS] ‘these lyrics’.

2.2. Experimental design

In order to avoid orthographic influence an audio-only XAB ex-
periment was designed in which the participants were asked to
listen to a sentence and two samples 〈AB〉, and select the sam-
ple that corresponded to the last word 〈X〉 of the sentence. The
samples were presented in both 〈AB〉 and 〈BA〉 order. In order
to avoid direct acoustic comparisons, and facilitate processing
at phonological level the target and candidate words were sepa-
rated by a relatively long (900ms) silence and a beep. A longer
beep (500ms) was used to mark the beginning of the trial, a
shorter one (200ms) to mark the samples to choose from.v

beep

kono kaS
X

s
beep

[ kas ]
A

[ kaS ]
B

t

Figure 2: Experiment trial with XAB design.

The stimuli were presented through a custom desktop applica-
tion with a graphical interface. Buttons with label A and B were
prepared to collect the responses. The 7-step continuum was
presented in two sample orders, repeated 6 times each, yielding
in 7× 2× 6 = 84 trials per session. The experiment, including
a brief training session took around 20 minutes.

2.3. Results

The experiment was carried out in two PC rooms with 63
Japanese undergraduate students. After a brief orientation, the
participants familiarized themselves with the experiment pro-
gram using only the least ambiguous S1 : [s] and S7 : [S] stim-
uli. After the practice, they performed the experiment individ-
ually. The participants were allowed to repeat the audio stimuli
and to revise their responses. Some participants considered the

Figure 3: Ratio of [s] responses with fitted sigmoid.
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experiment too repetitive, and reported difficulties in concentra-
tion. Thus, responses for those participants who did not reach
85% accuracy for the least ambiguous S1 and S7 stimuli were
removed from the results. This clean-up left 42 participants in
the dataset. Figure 3 summarizes the responses in the form of
[s] response ratios averaged over 42 participants. The fitted sig-
moid has the slope of −1.41 and a center between S4 and S5
(4.85).

3. Sibilant recognition with ASR
3.1. Sibilant recognition with GMMs

Representing the machine aspect of phoneme recognition, a
range of GMMs were trained using the Corpus of Spontaneous
Japanese. From the core part of the database 52,776 [s] and
33,748 [S] labeled segments were extracted. The middle 30ms
portion of these sibilants formed the basis of feature extraction.
OpenSMILE [19] was used to calculate 13 dimensional MFCC
and 6 dimensional PLP features over 20ms windows with 10ms
shift. With the delta features added, 26 dimensional MFCC and
12 dimensional PLP feature vectors were created for each seg-
ment. In addition to these typical ASR features, six widely
used phonetic features (center of gravity, skewness, spectral
variance, root mean square and zero crossing rate) were also
extracted over the same 30ms frame—using a custom Python
script. These 6 values formed the third type of feature vector,
labeled as ACU below.

A range of Gaussian mixture models for [s] and [S] were
trained with the three feature vectors (MFCC, PLP, ACU), com-
bined with four different covariance types (full, tied, diagonal,
spherical) and mixture numbers ranging from 1 to 20. In a ten-
fold cross validation setup, the GMMs were trained on 9 folds,
and evaluated against the unseen fold. The training/testing folds
were rotated in 10 steps, resulting in 10 accuracy scores for
each settings. The same randomly defined partitions were used
across all feature vectors, covariance types and mixture number
conditions.

Without aiming to draw general conclusions it can be
claimed that for this particular sibilant recognition task full co-

Figure 4: Sibilant classification accuracies
over 10 folds and 1-20 mixtures.
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variance GMMs trained on MFCC features provided the best
recognition accuracy, topping at 90.372%. PLP-based models
had just slightly lower performance than MFCC-based models,
acoustic features produced the lowest scores. Spherical covari-
ance models were the least accurate in all training feature con-
ditions.

Figure 5: Sibilant recognition accuracies. Each box
summarizes results from 10 test folds.
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Figure 5 shows further details of the recognition perfor-
mance with MFCC-based GMMs. While greater mixture num-
bers contributed to better recognition accuracies in general, the
tendency saturates at around 10 mixtures. GMMs with spherical
covariance matrices did not seem to benefit from higher mixture
numbers at all.

3.2. Correlation with human data

Using the same feature extraction methods as explained in the
previous subsection, the trained GMMs were tested against the
synthetic S1-S7 stimuli used in the human experiment. By sub-

Figure 6: Pearson correlation estimates over
10 folds and 1-20 mixtures.
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Figure 7: Correlation with human sibilant classification. Each
data point is the mean of Pearson’s rs over 10 test folds.
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tracting the log-probability scores estimated by Gaussian mix-
ture models of [s] and [S] the logarithm of probability ratios
were calculated.

log(p([s]))− log(p([ S ])) = log
p([s])

p([ S ])
(1)

The raw probability values from the human experiment were
also converted into log probability ratios. Since there were only
two alternatives in the forced choice task, probability values for
[S] could be calculated as 1− p([s]).

log
p([s])

1− p([s]) = log
p([s])

p([ S ])
(2)

Proximity to human perception was quantified as the corre-
lation between (1) and (2). Pearson product moment correlation
coefficients were chosen over rank correlations because it can
test perceptual distance relations.

For example, as the data from the human experiment testify
(cf. Figure 3) moving from stimuli S5 to S6 represents a rela-
tively great increase in the [S]-likeness of the percepts, while a
move from stimuli S6 to S7 is relatively small. Rank correlation
alone cannot explain this type of relations.

The strongest correlation with human data was achieved
by acoustic features with tied covariance matrix models
r={0.957, 0.996}. This high correlation, however, did not cor-
respond to high sibilant recognition accuracies (cf. Figure 4:
71.3-80.4%). As the spherical covariance models demonstrate,
GMMs trained on acoustic features were responsible not only
for the highest, but also for the lowest levels of correlations
with the sibilant experiment. PLP features, in contrast, showed
a consistently good performance—with the means of correla-
tion coefficients staying above 0.9 in all covariance conditions.
Human correlation for MFCC-based GMMs were inconclusive.
Full covariance GMMs with less than 9 mixtures had a steady
and strong correlation with human responses, but in other cases
Pearson’s r showed relatively wide variation. As it is demon-
strated in Figure 7, an increase in the number of mixtures did
not necessarily improved correlation with the human data.

3.3. Score correlation

Figure 8 shows the relation between classification accuracy
scores (vertical axes), and correlation coefficients calculated
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in comparison with the perceptual [s]-[S] boundary (horizontal
axes).

.

Figure 8: Accuracy versus correlation to human
perception of synthetic sibilants.
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Although the data points seem to lean towards the top-right cor-
ner of the plots, correlation tests outline a somewhat contra-
dictory picture. As shown in Table 1, while correlation tests
within covariance conditions tend to show negative or no signif-
icant correlations, sibilant classification accuracy and human-
like perception display statistically significant positive correla-
tion if conflating data within MFCC, PLP and ACU conditions.
Regarding the whole data set, the correlation is statistically sig-
nificant (Kendall’s τ = 0.112, p < 0.001).

Table 1: Kendall’s τs for testing correlation between sibilant
classification accuracy and human-like perception.

MFCC PLP ACU
τ p τ p τ p

full −0.197 *** 0.057 ns 0.124 **
tied −0.411 *** −0.0003 ns −0.034 ns
diag −0.111 * −0.194 *** 0.025 ns
spher −0.271 *** −0.192 *** 0.076 ns
(all) 0.352 *** 0.528 *** 0.612 ***

In order to explore the interaction between sibilant clas-
sification accuracy and perceptual correlation, a mixed-effect
model was used on the data. The model used accuracy (acc)
as the dependent variable; feature type (feat), covariance type
(cov), number of mixtures (mix), and correlation to human re-
sponses (corr) as fixed effects; test fold (fold) as random ef-
fect. Since, as discussed above, types and mixture numbers
showed variations as a function of feature type, their interac-
tions feat:cov and feat:mix were inserted into the model.

acc∼feat+feat:cov+feat:mix+corr+(1|fold) (3)

The mixed effect model also found that correlation with hu-
man perception was statistically significant (χ2(1)=28.784,
p<0.0001), though only to a small extent: 1.281±0.238 (Table
2).

Table 2: Extract from the mixed-effect model summary.

Est. Err. df t Pr(>|t|)
(Intercept) 74.685 0.309 819 242.05 < 2e-16 ***
featmfc 12.829 0.254 2390 50.57 < 2e-16 ***
featplp 10.641 0.253 2390 41.99 < 2e-16 ***
corr 1.281 0.238 2391 5.38 8.11e-08 ***
... ... ... ... ... ...
featacu:mix 0.168 0.012 2390 14.09 < 2e-16 ***
featmfc:mix 0.081 0.012 2390 6.73 2.11e-11 ***
featplp:mix 0.106 0.012 2390 9.20 < 2e-16 ***
... ... ... ... ... ...

4. Summary
Did GMM phoneme classifiers perceive synthetic sibilants as
humans do? The overall answer was yes, but closer inspection
revealed a relatively complex picture.

First, most GMM sibilant classifiers—trained on the Spon-
taneous Corpus of Japanese—showed relatively strong corre-
lation with human perceptual boundaries. Since the relatively
strict Pearson correlation was used to calculate human-machine
correlation, this result presents a strong argument for a positive
answer to the question in the title.

Second, training parameters were found to have strong
influence on the human-machine correlation. Acoustic fea-
tures with tied covariance matrices had the best correlation
with human perception (r={0.957, 0996}), although they per-
formed badly in the classification task. The strong correla-
tion with human-like perception was not unexpected as the
synthetic stimuli for the human experiment had been created
with specific acoustic features in mind (e.g., center of grav-
ity). However, the poor accuracy with natural data implies that
the chosen acoustic features describe only limited—albeit well-
researched—perceptual aspects of the sibilants. It was also dis-
covered that unlike in the case of classification accuracy, more
mixtures did not necessarily provide better correlation with hu-
man perception of the synthetic stimuli. As for training feature
vector types, PLP-based models provided consistently high cor-
relation scores, outdoing MFCC models both in consistency and
in correlation coefficient values.

Third, the relation between classification accuracy and cor-
relation with human-like perception was investigated. The ini-
tial hypothesis was that better classifiers correlate more strongly
to human-like perception of the synthetic stimuli. While statis-
tical tests verified this hypothesis within larger partitions of the
data, smaller partitions actually showed an inverse correlation.
Within the four covariance conditions, classification accuracy
was most cases found to be negatively correlated with proxim-
ity to human-like perception. This trade-off relation could be
an indicator of a mismatch between statistical models and hu-
man perception. The acoustic details that statistical models are
successfully relying on in classification tasks are most probably
different from the ones human use in perception.
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