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Abstract

This paper presents the NU-NAIST voice conversion (VC) sys-
tem for the Voice Conversion Challenge 2016 (VCC 2016) de-
veloped by a joint team of Nagoya University and Nara Institute
of Science and Technology. Statistical VC based on a Gaussian
mixture model makes it possible to convert speaker identity of
a source speaker’ voice into that of a target speaker by convert-
ing several speech parameters. However, various factors such
as parameterization errors and over-smoothing effects usually
cause speech quality degradation of the converted voice. To
address this issue, we have proposed a direct waveform modifi-
cation technique based on spectral differential filtering and have
successfully applied it to singing voice conversion where exci-
tation features are not necessary converted. In this paper, we
propose a method to apply this technique to a standard voice
conversion task where excitation feature conversion is needed.
The result of VCC 2016 demonstrates that the NU-NAIST VC
system developed by the proposed method yields the best con-
version accuracy for speaker identity (more than 70% of the
correct rate) and quite high naturalness score (more than 3 of
the mean opinion score). This paper presents detail descrip-
tions of the NU-NAIST VC system and additional results of its
performance evaluation.

Index Terms: voice conversion challenge 2016, speaker iden-
tity, segmental feature, Gaussian mixture model, STRAIGHT
analysis.

1. Introduction

Varieties of voice characteristics, such as voice timbre and
fundamental frequency (Fp) patterns, produced by individual
speakers are always restricted by their own physical constraint
due to the speech production mechanism. This constraint is
helpful for making it possible to produce a speech signal ca-
pable of simultaneously conveying not only linguistic informa-
tion but also non-linguistic information such as speaker iden-
tity. However, it also causes various barriers in speech com-
munication; e.g., severe vocal disorders are easily caused even
if speech organs are partially damaged; and we hesitate to talk
about something private using a cell phone if we are surrounded
by others. If the individual speakers freely produced vari-
ous voice characteristics over their own physical constraints, it
would break down these barriers and open up an entirely new
speech communication style.

Voice conversion (VC) is a potential technique to make
it possible for us to produce speech sounds beyond our own
physical constraints [1]. VC research was originally started to
achieve speaker conversion to make it possible to transform the
voice identity of a source speaker into that of a target speaker
while preserving the linguistic content [2]. A mainstream of
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VC is a statistical approach to developing a conversion function
using a parallel data set consisting of utterances of the source
and target speakers. As one of the most popular statistical VC
methods, a regression method using a Gaussian mixture model
(GMM) was proposed [3]. To improve performance of the
GMM-based VC method, various VC methods have been pro-
posed by implementing more sophisticated techniques, such as
Gaussian process regression [4, 5] deep neural networks [6, 7],
non-negative matrix factorization [8, 9], and so on. We have
also significantly improved performance of the standard GMM-
based VC method by incorporating a trajectory-based conver-
sion algorithm to make it possible to consider temporal correla-
tion in conversion [10], modeling additional features to alleviate
an over-smoothing effect of the converted speech parameters,
such as global variance (GV) [10] and modulation spectrum
(MS) [11], and implementing STRAIGHT [12] with mixed ex-
citation [13]. Furthermore, a real-time conversion process has
also been successfully implemented for state-of-the-art GMM-
based VC [14]. However, the speech quality of the converted
voices is still obviously degraded compared to that of the natural
voices. One of the biggest factors causing this quality degrada-
tion is the waveform generation process using a vocoder [15],
which is still observed even when using high-quality vocoder
systems [12, 16, 17].

In singing VC (SVC), to avoid the quality degradation
caused by the vocoding process [15], we have proposed an intra-
gender SVC method with direct waveform modification based
on spectrum differential (DIFFSVC) [18] considering global
variance (GV) [19], focusing on Fp transformation is not nec-
essary in the intra-gender SVC. The DIFFSVC framework can
avoid using the vocoder by directly filtering an input singing
voice waveform with a time sequence of spectral parameter dif-
ferentials estimated by a differential GMM (DIFFGMM) ana-
Iytically derived from the conventional GMM used in the stan-
dard method. Moreover, to apply this DIFFSVC framework
to cross-gender DIFFSVC as well, we have proposed an Fj
transformation technique with direct residual signal modifica-
tion [20] based on time-scaling with waveform similarity-based
overlap-add [21] and resampling.

In this paper, we develop a new VC system for speaker con-
version based on the direct waveform modification technique,
which was submitted to the Voice Conversion Challenge 2016
(VCC 2016) [22] from our joint team of Nagoya University and
Nara Institute of Science and Technology (NAIST) as the NU-
NAIST VC system (called “new NAIST VC system”). The fol-
lowing techniques are newly implemented for our GMM-based
VC system: 1) voice conversion with direct waveform modifi-
cation with spectral differential (DIFFVC), 2) speech parame-
ter trajectory smoothing in the GMM training, 3) post-filtering
process based on MS for DIFFVC, and 4) excitation conver-
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sion (EC) using STRAIGHT as preprocessing of spectral con-
version. The results of the VCC 2016 have demonstrated that
the NU-NAIST VC system (system “J”’) achieved the best con-
version accuracy on speaker identity and high naturalness (more
than 3 on the mean opinion score scale). In this paper, we
also conduct subjective evaluations, demonstrating that the NU-
NAIST VC system achieves high speech quality and conversion
accuracy comparable to our conventional GMM-based VC sys-
tem.

2. VC based on GMM

In the conventional VC, acoustic features such as spectral fea-
tures and aperiodic components of a source speaker are con-
verted into those of a target speaker based on previously trained
GMMs. Fj is transformed to compensate for the difference in
pitch between the source and target speakers based on frame-
by-frame linear conversion. Finally, the converted voice is gen-
erated by synthesizing these converted acoustic features using a
vocoder.

2.1. Acoustic feature mapping based on GMM

Acoustic feature mapping based on GMM consists of a training
process and a conversion process.

In the training process, a joint probability density function
of acoustic features of the source and target speaker’ voices
are modeled with a GMM using a parallel data set. As the
acoustic features of the source and target speakers, we em-
ploy 2D-dimensional joint static and dynamic feature vectors
X: = [x],A=x]]" of the source and Y; = [y, Ay/[]" of
the target consisting of D-dimensional static feature vectors x;
and y, and their dynamic feature vectors Az, and Ay, at frame
t, respectively, where T denotes the transposition of the vector.
Their joint probability density modeled by the GMM is given

by
P (X1, YN
=§§a¢v X BB
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where AV (+; i, 33) denotes the normal distribution with a mean
vector p and a covariance matrix 3. The mixture component
index is m. The total number of mixture components is M. A
is a GMM parameter set consisting of the mixture-component
weight a.,,, the mean vector u,,,, and the covariance matrix 33,
of the m-th mixture component. The GMM is trained using
joint vectors of X; and Y, in the parallel data set, which are
automatically aligned to each other by dynamic time warping.

In the conversion process, the acoustic features of the
source speaker are converted into that of the target speaker us-
ing maximum likelihood estimation (MLE) of speech parameter
trajectories using the GMM and GV [10].

2.2. Fj transformation

In both intra- and cross-gender conversions, Fp is transformed
frame-by-frame in order to line up pitch differences between
source and target speakers.

o)

= o (@) (xt - :u‘(l)) + :U‘(y)7
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where z; and g are a log-scaled Fy of the source speaker and
the converted one at frame ¢. ,u(””) and o(®) are the mean and
standard deviation of log-scaled Fy of the source speaker and
¥ and ¢¥) are those of the target speaker.
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3. The NU-NAIST VC system for VCC 2016

In this paper, we proposed the following techniques: 1) DIF-
FVC, 2) GMM training with smoothed speech parameter tra-
jectory, 3) post-filtering process based on modulation spectrum
(MS) for DIFFVC, and 4) excitation conversion with Fy and
aperiodic components transformations using a vocoder. Figure
1 indicates the conversion flow of the NU-NAIST VC system
for the VCC 2016. The NU-NAIST VC system performs ex-
citation and spectral conversion. During excitation conversion,
Fp values and aperiodic components extracted from a source
voice are transformed within an analysis/synthesis framework
using a vocoder. During spectral conversion, spectral features
of the source voice are converted into spectral feature differ-
entials based on the DIFFGMM. Next, MS-based post-filtering
is applied to the spectral feature differential. Finally, the con-
verted speech waveform is generated by directly filtering the
analysis-synthesized speech waveform generated during the ex-
citation conversion step using the post-filtered spectral feature
differentials.

3.1. DIFFVC based on DIFFGMM

As part of the modelling step, the DIFFGMM is analytically
derived from the traditional GMM (in Eq. (3)). Let D.

[d;r , Adﬂ T denote the static and dynamic differential feature

vector, where d; = y, — ¢, the DIFFGMM is derived by trans-

forming model parameters in the same manner as DIFFSVC
P (X, D¢|A)

[18] as follows:
M (X)
S (BRI o
m=1 m

During the conversion step, a time sequence of the D-
dimensional converted spectral feature differentials, d, is de-
termined using MLE of the speech parameter trajectory using
the DIFFGMM [18]. Then, the converted speech waveform is
generated by directly filtering an input speech waveform with a
time-variant synthesis filter designed from the spectral feature
differential sequence. This filtering process modifies a spectral

envelope sequence while basically preserving the natural exci-
tation signals of the input speech waveform.

I SARAED SR
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3.2. Speech parameter trajectory smoothing

Modulation Spectrum (MS) [11] is defined as the log-scaled
power spectrum of the parameter sequence; i.e., temporal fluc-
tuation of the parameter sequence is decomposed into individ-
ual modulation frequency components and their power values
are represented as the MS. The MS, s (y), of the parameter se-
quence y is defined as:

73d(y)T,"'

TT
s (y) o] @

,54,0.—1 ()], (5)

where 2Dy is the length of the discrete Fourier transform, and
sa,f (y) is the f-th MS of the d-th dimension of the parame-
ter sequence [y, (d), -+ ,y, (d)]". f is the modulation fre-
quency index. As reported in [23, 24], the higher modulation
frequency components (more fluctuating components of a tem-
poral sequence) of spectral parameter sequences are negligible
for speech quality. By applying a low-pass filter (LPF) that re-
moves the higher modulation frequency components (e.g., more
than 50 Hz (f > Ds/2)), we can improve training accuracy

[31 7,

sa(y) = [sa0(y), 84,5 (y),
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Figure 1: Conversion process of the NU-NAIST VC system for VCC 2016.

of acoustic models as done for hidden Markov model-based
speech synthesis [25]. Here, source and target speakers’ speech
parameter sequences, « and y, are LPFed, then the LPFed se-
quences, PP and y<LPF>, are used to train the GMM. In
conversion, *"¥) is used to generate the spectral differentials.

3.3. MS-based post-filter for VC with spectral differentials

Statistical modeling tends to deteriorate MSs of the converted
speech parameters, and keeping natural MSs is strongly effec-
tive for improving the quality of the converted speech. An MS-
based post-filter (MSPF) [11], which is applied after speech
parameter conversion in conventional GMM-based VC, mod-
ifies a converted speech parameter sequence so that the se-
quence has the target speaker’s natural MS. Here, we propose
an MS-based post-filtering process that modifies spectral differ-
entials, d, such that the finally synthesized speech has the target
speaker’s natural MS.

In training, we calculate MS statistics for target speaker’s
natural and converted speech parameters from the training data,
yand § = [d+xP)]. Here, let ,U,L(i%l} and ul(f’} be the mean of

s4,7 (y) and sq,¢ (@), and let aiﬁ}

The d is generated by converting x

In conversion, FY) is first added to the generated d.
Then, the MS, sq4,7 (3) is converted as follows:

and O'é,g} be their variance.
(LPF)

(v)
_ 04 - ]
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d,f

The converted ¥ is determined using the converted MS and the

original phase components. The MSPFed spectral differentials,
J(MSPF> can be determined by subtracting PP from the

converted 4 '. Note that, in this paper, we use mean-normalized
MSs and adopt a segment-level post-filtering process [11].

3.4. Excitation conversion based on F; and aperiodicity
transformations using a vocoder

Although we initially tried implementing the Fj transforma-
tion technique with direct residual signal modification [20] for
singer conversion, we found that this technique was not effec-
tive for speaker conversion. In speaker conversion, we need
to handle larger acoustic differences in excitation signals be-
tween the source and target speakers compared to singing voice
conversion. To address this issue, we implemented excitation
conversion using STRAIGHT [26] as high-quality vocoder. For
the Fp transformation, we perform the global linear transfor-
mation as described in Sect 2.2. For the aperiodic components,
band-averaged aperiodic components are extracted and con-
verted with the GMM as in the conventional method [13]. Then,

"Note that, because the MSPF process is non-linear to the speech
parameter sequence, the sequence that & (IPF) is subtracted from the
converted g is not equal to d.
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original aperiodic components at all frequency bins are shifted
using aperiodic differentials between the extracted and con-
verted band-averaged aperiodic components. Finally, analysis-
synthesized speech is generated from these transformed excita-
tion parameters using STRAIGHT. Note that full STRAIGHT
spectral representation is directly used in synthesis.

This excitation conversion method actually causes signifi-
cant quality degradation because original phase information is
discarded. Nevertheless, we have found that this method yields
better speech quality as well as better conversion accuracy than
the direct residual signal modification [20].

4. Experimental evaluation

In this section, we show results of the VCC 2016 to demon-
strate performance of the NU-NAIST VC system. Moreover,
we compare the following three systems:

* DIFFVC (EC): The NU-NAIST VC system submitted to
the VCC 2016,

* VC: Our conventional VC system [13],

* DIFFVC: The NU-NAIST VC system w/o excitation
conversion.

4.1. Experimental conditions

We evaluated speech quality and speaker identity of the con-
verted voices to compare performance of the different VC sys-
tems in both intra-gender and cross-gender conversion tasks.
We used the English speech database used in the VCC 2016.
The number of source speakers was 5 including 3 females and
2 males, and that of the target speakers was 5 including 2 fe-
males and 3 males who were different from the source female
and male speakers. The number of sentences uttered by each
speaker was 216. The sampling frequency was set to 16 kHz.

STRAIGHT [12] was used to extract spectral envelopes,
which was parameterized into the 1-24th mel-cepstral coeffi-
cients as the spectral feature. The frame shift was 5 ms. The
mel log spectrum approximation (MLSA) filter [27] was used
as the synthesis filter. As the source excitation features, we used
Fp and aperiodic components extracted with STRAIGHT [26].
The aperiodic components were averaged over five frequency
bands, i.e., 0-1, 1-2, 2-4, 4-6, and 6-8 kHz, to be modeled with
the GMM.

We used 162 sentences for training and the remaining 54
sentences were used for evaluation. The speaker-dependent
GMMs were separately trained for all combinations of source
and target speaker pairs. The number of mixture components
for the mel-cepstral coefficients was 128 and for the aperiodic
components was 64.

Two preference tests were conducted. In the first test,
speech quality of the converted voices was evaluated. The con-
verted voice samples generated by two different VC systems for
the same sentences were presented to subjects in random order.
The subjects selected which sample had better speech quality.
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In the second test, conversion accuracy in speaker identity was
evaluated. A natural voice sample of the target speaker was pre-
sented to the subjects first as a reference. Then, the converted
voice samples generated by two different VC systems for the
same sentences were presented in random order. The subjects
selected which sample was more similar to the reference natural
voice in terms of speaker identity. The number of subjects was
10 and each listener evaluated 54 sample pairs in each evalu-
ation. They were allowed to replay each sample pair as many
times as necessary.

4.2. Results of the VCC 2016

Figure 2 indicates an overall result of the VCC 2016. The NU-
NAIST VC system achieved quite high speech quality over 3.0
of MOS and the best conversion accuracy (about 74%) among
all submitted VC systems. In terms of the conversion accuracy,
our system achieved successful performance even though very
simple prosodic conversion was performed. However, it is ob-
served that there is still a large gap between the converted voices
and the natural target voices. It is expected that further improve-
ments will be yielded by implementing a conversion method of
prosodic patterns or asking the source speakers to mimic target
prosodic patterns, which would be possible in several practical
applications. In terms of speech quality, the NU-NAIST VC
system causes serious quality degradation compared to natural
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voices, i.e., from 4.6 to 3.0 in MOS. This quality degradation
is mainly caused by using a vocoder to perform the excitation
conversion as shown in the next section. Therefore, it is ex-
pected that the converted speech quality will be significantly
improved by developing a better analysis/synthesis technique
than STRAIGHT.

4.3. Results of subjective evaluation

Figures 3 (a) and (b) indicate the results of the preference
test for speech quality. DIFFVC (EC) achieves equivalent
speech quality compared to VC in both intra/cross-gender con-
versions. On the other hand, DIFFVC achieves significantly
higher speech quality compared to the other two methods in the
intra-gender conversion. This is because DIFFVC can avoid us-
ing vocoding to generate converted speech waveforms, making
the conversion process free from various errors, such as Fp ex-
traction errors and unvoiced/voiced decision errors. Note that
DIFFVC in cross-gender conversion condition does not result
in any significant quality improvements as it suffers from mis-
matches between spectral envelope and Fp in the cross-gender
conversion.

Figures 4 (a) and (b) indicate the results of the preference
test for speaker identity. Although DIFFVC (EC) has equivalent
conversion accuracy compared to VC in the intra-gender con-
version, it tends to be degraded in the cross-gender conversion.
It is expected that the residual spectral envelope preserved in
the direct waveform modification process still includes speaker-
dependent or gender-dependent features, and that this causes
adverse effects on conversion accuracy.

These results suggest that 1) the NU-NAIST VC system
demonstrating the best conversion accuracy and high speech
quality in the VCC 2016 has an almost equivalent perfor-
mance compared to the conventional VC system in both intra-
gender and cross-gender conversions, and 2) the direct wave-
form modification technique achieves significantly higher con-
verted speech quality compared to the conventional VC system
if the excitation conversion is not necessary as in the intra-
gender conversion, and therefore, there is still large room to
improve the converted speech quality of the NU-NAIST VC
system.

5. Conclusions

This paper describes the details of the NU-NAIST voice con-
version (VC) system for the Voice Conversion Challenge 2016
(VCC 2016) developed by a joint team of Nagoya University
and Nara Institute of Science and Technology. In order to im-
prove the quality of statistical VC based on Gaussian Mixture
Model (GMM), we applied the following techniques: 1) voice
conversion with direct waveform modification with spectral dif-
ferential (DIFFVC), 2) speech parameter trajectory smoothing,
3) post-filtering based on modulation spectrum for DIFFVC,
and 4) preprocessing for excitation conversion with Fy and ape-
riodic component transformations using high-quality vocoding.
The experimental results demonstrated that the NU-NAIST VC
system was highly ranked in the VCC 2016, its performance
was comparable to our conventional VC system, and the DIF-
FVC technique showed large potential to significantly improve
the converted speech quality of the NU-NAIST VC system. In
future work, we plan to implement high quality Fy and aperi-
odicity transformation for the DIFFVC technique.
Acknowledgements This work was supported in part by JSPS
KAKENHI Grant Number 26280060 and Grant-in-Aid for
JSPS Research Fellow Number 16J10726.
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