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Abstract

We investigate induction of a bilingual lexicon from a corpus

of phonemic transcriptions that have been sentence-aligned

with English translations. We evaluate existing models that

have been used for this purpose and report on two additional

models, which demonstrate performance improvements. The

first performs monolingual segmentation followed by align-

ment, while the second performs both tasks jointly. We show

that monolingual and bilingual lexical entries can be learnt

with high precision from corpora having just 1k–10k sen-

tences. We explain how our results support the application

of alignment algorithms to the task of documenting endan-

gered languages.

1. Introduction

Language documentation involves the construction of text

collections, lexicons and grammars in the interest of creat-

ing a record of a language for future linguistic, cultural and

anthropological analysis. Traditional approaches to language

documentation are labour-intensive, requiring much one-on-

one time between a field linguist and the mother tongue

speakers. Unfortunately, there aren’t enough linguists to doc-

ument the world’s languages using these approaches before

many of the approximately 7,000 languages die out.

There is a movement to increase the rate of data collec-

tion of endangered languages using cheap and widespread

electronics to record speech in a more ad hoc manner

[1, 2, 3, 4, 5], in an attempt to provide the field linguist with

leverage to acquire data faster. This data is primarily audio,

since most languages have no established written form and

capturing audio is comparatively fast. Additionally, much of

the data is bilingual, as an important aspect of the language

documentation process is the construction of bilingual cor-

pora and lexicons.

In this paper we consider the task of automatically learn-

ing monolingual and bilingual lexical items from unseg-

mented phonemic transcriptions of interleaved audio (seg-

ments of speech in one language along with spoken trans-

lations in another). Such transcriptions could arise from two

scenarios. The first is when future philologists phonetically

transcribe speech of a language post-mortem, without native

speakers to assist in word segmentation. In such instances

lexicon induction would aid in linguistic analysis of the lan-

guage. The second is by instead employing automatic speech

recognition technologies for the same task. In both cases lex-

icon induction could aid in bootstrapping automatic speech

recognition (ASR) systems targeting the language’s untran-

scribed audio. Note that we assume a transcription of the

English translation, since English speech can be reliably and

cheaply transcribed.

Previous work on bilingual lexicon induction using

sentence-aligned corpora has focused primarily on large cor-

pora of written text [6, 7, 8, 9]. However, bilingual lexicon

induction applied to phonemically transcribed audio intro-

duces problems, including the lack of word segmentation and

the small quantities of data. There has been limited work

on learning lexicons from phonemic transcriptions. [10, 11]

take a first look at phoneme–word translation modeling, us-

ing traditional IBM Models [12] in order to determine align-

ments and applying heuristics to extract dictionaries. [13]

propose Model 3P, which builds upon the generative story of

IBM Model 3 by adding additional word length parameters

and allowing it to significantly outperform the IBM models

[14, 15, 16].

Building on this work, we investigate two models that

haven’t been considered in this context and demonstrate that

they can outperform the models that have been considered.

The first performs unsupervised word segmentation followed

by word alignment. The second jointly performs word seg-

mentation and alignment. Importantly, we evaluate the mod-

els on a data set that is significantly smaller than has been

evaluated on previously, containing between just 1k and 10k

sentences, corresponding to 13k and 132k words. This likely

corresponds to something in the order of 1 to 10 hours of

speech [17, 18, 5]. These quantities of data are realistic in the

context of documentation of endangered languages, though

the applicability of these techniques also applies more gener-

ally to low-resource languages that have no body of written

resources.

We run experiments to assess the induced lexicons’ pre-

cisions at k entries. We do this by applying the alignment

models to a German–English corpus, using heuristics to ex-



tract lexical entries before having them manually annotated1.

German was used since it permitted easier manual anno-

tation of lexical entries than an endangered language. Al-

though German and English are more closely related lan-

guages than language pairs encountered in linguistic field-

work, modeling of the language pair is still complex due to

varying word order between the languages and the morpho-

logical richness of German relative to English.

Results demonstrate that hundreds of bilingual lexical en-

tries can be learnt with good precision, with the additional

proposed methods outperforming Model 3P on a data set of

10k sentences. This offers promise of the technique’s appli-

cability in a language documentation context. Moreover, the

majority of incorrect entries correspond to well-segmented,

but misaligned, source words.

2. Translation Models

Our lexicon induction approach uses various phrase align-

ment techniques to segment sequences of phonemes into

words and learn phrase tables. There are several methods

for word segmentation in machine translation [19, 20, 21,

22, 16], but there has been limited application in a low re-

source context. In this paper we examine four representative

methods to apply to parallel sentences comprised of source

phoneme tokens and target words.

The first two, GIZA++ and Model 3P, have been in-

vestigated previously for the task of phoneme–word align-

ment [10, 14]. They are evaluated as a point of comparison

for the latter two methods we demonstrate are effective for

this task, which use unsupervised word segmentation (UWS)

with GIZA++ and a Bayesian inversion transduction gram-

mar (ITG) framework.

2.1. GIZA++

GIZA++ is the baseline that follows the standard statistical

machine translation (SMT) pipeline of performing alignment

with the IBM Models [12], as implemented in GIZA++ [23].

This approach to alignment was used in seminal work on

phoneme–word alignment [10, 11]. The problem with this

approach is that it attempts to capture relationships between

individual foreign phonemes and English words, which is ex-

tremely difficult.

2.2. Model 3P

PISA2 is an implementation of the Model 3P model of [13].

It builds upon the generative model of IBM Model 3 [12] by

adding additional word length parameters (see Figure 1), al-

lowing it to outperform traditional IBM models on phoneme–

word alignment tasks. After initializing model parameters

with learnt GIZA++ parameters, the PISA implementation

1These annotations will be released along with code for the lexicon in-

duction.
2https://code.google.com/p/pisa
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Figure 1: The generative model of Model 3P.

das ?Is t hi:6 nIC t dE6 fal

this is not the case here

Figure 2: Monolingual segmentation of phonemes followed

by alignment, as done in the UWS GIZA++ approach.

of Model 3P uses a genetic algorithm to learn the parameters

of the model.

The additional word length parameters, distinct from the

fertility parameters, allow Model 3P to learn latent word rep-

resentations that would not be able to be captured in a direct

phoneme–word mapping. This allows for better segmenta-

tion performance.

2.3. UWS GIZA++

UWS GIZA++ first performs unsupervised word segmenta-

tion using the Bayesian Pitman-Yor language model [24], as

implemented in the tool pgibbs3 [25]. Alignment is then per-

formed between these phoneme sequences and the English

words using GIZA++ (see Figure 2). This was hypothesized

to be more appropriate than GIZA++ alone since it would re-

sult in breaking the foreign phoneme sequences into coarser

tokens that translate better to English. Note that there is

not an expectation that the word segmentation perform well

with respect to what is considered a “word” in the given lan-

guage. Instead, the key idea is that the segmenter breaks

phonemes into frequently repeating units that capture more

meaning than just using individual phonemes. Consider Fig-

ure 2: the erroneous segmentation nevertheless allows for

accurate alignment after monolingual segmentation.

2.4. Bayes ITG

Bayes ITG performs joint word segmentation and alignment

using the substring alignment model of [26], as implemented

in pialign4 [27]. Alignments are obtained through Bayesian

learning of inversion transduction grammar trees [28], which

3http://github.com/neubig/pgibbs
4http://github.com/neubig/pialign
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Figure 3: An ITG tree structure learnt by pialign. Note that

pialign forces alignments down to individual tokens, but the

leaf nodes presented here represent alignments that were gen-

erated as single phrase by the model.

completely describe the sentence and its translation as a tree

of aligned phrases and binary reordering operations. In Fig-

ure 3 the sentence is decomposed, with phrases of different

granularities being captured. The REG and INV tags illus-

trate the reordering capacities of the ITG trees, with REG be-

ing a monotone alignment ordering and INV flipping the En-

glish side with respect to the foreign phonemes. The advan-

tage of this joint learning approach over GIZA++, Model 3P

and UWS GIZA++ is that the segmentation on the phoneme

side can be informed by the English, which has been shown

to be valuable [20, 21, 22]. Furthermore, the base distribu-

tion Bayes ITG draws from uses cooccurrence probabilities

of phrases. This contrasts with Model 3P’s initialization,

which uses only the limited phoneme–word alignments of

GIZA++.

3. Experimental Setup

3.1. Data

To train the translation models we used the German–English

parallel corpus from Europarl v7 [29]. In order to imi-

tate a phoneme transcription, we converted the German side

to a sequence of phonemes (represented with the SAMPA5

phoneme alphabet) using the MARY text-to-speech system

[30]. For example, ‘dieser’ is represented as a sequence of

space-separated phonemes, ‘d i: z 6’.

The phonemic output of MARY includes some informa-

tion that cannot reasonably be detected by an ASR system. In

particular, stress markers and syllable boundaries are features

output by the system (‘´’ and ‘-’ respectively), so we filtered

them out. The granularity of tokens on the source side was

thus at the phoneme level while English words were used on

the target side.

Small quantities of data were used in order to mimic the

realities of data collection for endangered languages. We ex-

perimented with varying data sizes to evaluate how the best

5http://www.phon.ucl.ac.uk/home/sampa/german.htm

method’s performance scales. We used data sets of 1k, 2k,

5k, and 10k parallel sentences (corresponding to between
∼13k and ∼132k words), a quantity that is vastly smaller than

what is typically used in statistical machine translation ex-

periments but which approaches reasonable size for reliable

manual transcription. We limited training sentences to those

fewer than 100 phonemes in length.

3.2. Translation Model Training Parameters

GIZA++ was trained using the train-model.perl script in-

cluded in Moses with default settings, using the grow-diag-

final-and heuristic for symmetrization/phrase extraction and

the msd-bidirectional-fe reordering model.

PISA was trained with default settings.

UWS GIZA++ was trained by running pgibbs first, and

then running GIZA++ over the segmented phoneme se-

quences with default settings. The pgibbs settings were de-

fault, with the following exceptions: block sampling was

used with a block size of 50, a Pitman-Yor distribution was

used, and 1000 iterations were run. The final sample output

by pgibbs was used as input to GIZA++. GIZA++ was run in

the same way as above, using train-model.perl with heuris-

tics for phrase extraction. It’s worth noting that the hyperpa-

rameters supplied to pgibbs dictate segmentation granularity.

Were they to change, we would expect the average length of

the word units learnt to be different.

We ran pialign for 10 iterations with the base distribu-

tion being a log-linear interpolation of phrase cooccurrence

probabilities in both directions (with a discount of 5), a beam

width of 10-6 and a batch length of 40. The final sample was

used for the purposes of phrase table extraction.

3.3. Bilingual Lexicon Extraction

To create bilingual lexicons using the above approaches, en-

tries in the phrase tables were first sorted according to their

joint probabilities. We only included entries where the length

of the phonemic side was 2 or greater. This heuristic was

used since it removed many spurious entries where one for-

eign phoneme was aligned to an entire word. Additionally,

for a given English entry no more than the top 5 translations

were included. A similar filter was applied to prevent more

than 5 English translations of a given phoneme sequence.

The top 500 entries of each lexicon were then manually an-

notated.

3.4. Annotation

Entries in the lexicon were evaluated by a native German

speaker.6 They were determined to be correct, incorrect or

ambiguous. Correct entries are those that can readily be

found in existing German–English dictionaries. For exam-

ple, the entry vIs@n⇔know (‘wissen’). Incorrect entries are

those whose translations are deemed to be clearly incorrect

6We measured inter-annotator agreement by doubly annotating a sample

of 1k entries, using a non-native German speaker, resulting in κ = 0.69.
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Figure 4: Comparison of the methods’ precisions over the

10k dataset. Note that these are the results of the strict eval-

uation.

by the annotator. These include entries such as tsu:?aIn⇔the

and b@dINUN⇔be. In the latter case, note that although the

word alignment is incorrect, the phonemes represent a cor-

rectly segmented German word, ‘Bedingung’.

Ambiguous entries are those that are neither strictly cor-

rect nor incorrect. These include entries that have bound-

ary errors. For example, nvi:6⇔we (‘wir’) includes an extra

‘n’ in an otherwise correct entry. Other ambiguous entries

are those that, while not found in lexicons, are nonetheless

meaningful. These usually highlight interesting linguistic

phenomena. For example, nICt⇔does not (‘nicht’) couldn’t

be found in Leo,7 however it captures a meaningful grammat-

ical relationship between the languages. Consider the phrase

‘er rennt nicht’ and one English translation ‘he does not run’,

where this entry makes sense.

4. Quantitative Evaluation

4.1. Precision at k over bilingual entries

We compare the four models described in Section 2, each

of which takes as input sentences of unsegmented phonemes

and English translations. Figure 4 shows the precisions of the

bilingual lexicons as the number of entries increases from 1

to 500 (sorted by the joint probability given by the model),

using the methods trained on 10k sentences.8 The ‘tradi-

tional’ approach with GIZA++ is the worst performer across

the board. This is to be expected as it uses lexical translation

probabilities between poorly translated German phonemes

and English words as the basis for the extracted phrases. As

a point of comparison to these models, we trained an ‘ora-

cle’ model on correctly segmented phonemes using GIZA++,

7http://www.leo.org
8Note that we do not investigate recall as it is both difficult to establish

and less relevant in the early stages of language documentation as only a

small fraction of words will be captured in any case.
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Figure 5: Comparison of Bayes ITG precisions for different

sized data.

which removes the effect of segmentation errors but still in-

cludes the effect of alignment errors. This oracle model

yielded a lexicon with a precision of 0.932 over the top 500

entries.

The other methods are more similar in performance, with

the best performing approach being Bayes ITG. Though the

results are close, the better performance of Bayes ITG as

compared to the unsupervised word segmentation approach

can possibly be attributed to the added information the En-

glish side provides in determining useful German phrases.

This contrasts to the unsupervised word segmentation ap-

proach which segments using only monolingual German

phonemic data. Performance gains over PISA’s Model 3P

can perhaps be attributed to limitations in Model 3P’s gen-

erative model. Rather than learning explicit phrasal relation-

ships between phoneme groups and words, Model 3P condi-

tions the generation of phonemes from latent words and the

location within that word.

Similar trends in the scores were demonstrated when

evaluating precisions that accepted ambiguous entries as also

correct.

Given that Bayes ITG was the best-performing approach

on 10k sentences, we additionally evaluated it on smaller

data sizes (see Figure 5). The fewer sentences of phonemes

that are supplied the more reasonable it is to assume that they

can be acquired through reliable manual transcription in a

real language preservation scenario. Precision appears to be

a logarithmic function of the size of the training data. These

results suggest that the first few hundred entries in a lexicon

can be acquired with good precision even with very limited

data.

4.2. Word segmentation performance

In addition to evaluating the quality of the bilingual entries,

we evaluated the quality of monolingual lexical entries on



Method Sents Incorrect % Correct seg. %

Bayes ITG 1k 26.2 52.7

Bayes ITG 2k 16.6 60.2

Bayes ITG 5k 13.4 62.7

Bayes ITG 10k 9.6 62.5

UWS GIZA++ 10k 7.2 38.9

GIZA++ 10k 19.4 15.5

Model 3P 10k 14.6 46.6

Table 1: The accuracy of the segmentation of phonemic lex-

ical entries judged incorrect. The Incorrect % columns indi-

cate the percentage of the 500 annotated entries that were la-

beled completely incorrect as bilingual entries . The Correct

seg. % column indicates the percentage of those incorrect

entries that were correctly segmented monolingual entries.

the phoneme side. This is motivated by the observation that

often correct phonemic word units were extracted but mis-

translated. Since monolingual entries are useful in their own

right for language documentation purposes (for instance, as

a useful starting point for manual correction) and language

modeling, we assessed entries that were incorrect to deter-

mine whether the phonemic component was segmented cor-

rectly at the word boundaries.

Table 1 shows the proportion of the total entries that were

annotated as incorrect and the proportion of those entries

that were correct monolingual lexical entries on the phoneme

side. Bayes ITG demonstrates effective inference of lexi-

cal items with few boundary errors, outperforming the other

methods regardless of the amount of training data used. This

corroborates past research that indicates that word segmenta-

tion can be better informed with bilingual data [20, 21, 22].

Also noteworthy is the outperformance of Model 3P rel-

ative to UWS GIZA++ when entries are correct (though hav-

ing fewer strictly incorrect entries overall). In the approach

of UWS GIZA++ it is impossible to break apart phoneme

groups that have been chunked across word boundaries by

the monolingual segmentation phase. However, the other

methods aren’t constrained by early, poorly informed chunk-

ing. This allows Model 3P relatively better word segmenta-

tion despite lower precision of bilingual lexical entries.

Note that although we are evaluating monolingual en-

tries, the entries of UWS GIZA++ are still informed by the

alignments with English, as the entries evaluated are the

highest probability bilingual lexical entries found. This miti-

gates the problem of the effort required to tweak the hyperpa-

rameters of the word segmenter to find the right granularity

of phoneme clusters. The granularity is instead informed by

the English. To appreciate this, consider the most occurring

lexical entries of the monolingual supervision without being

informed by the alignments, as shown in Table 2. Of these,

the only one that is an actual word is di: (‘die’). The rest

are common sub-word units. Note though that @n (‘-en’)

is a common suffix for infinitive verbs—a particularly useful

morpheme.

Token Occurrences

? 13,096

@ 8,587

n 8,138

t 6,422

@n 6,300

d 5,929

s 3,226

6 3,136

f 3,099

di: 2,913

Table 2: The most common lexical entries found by the un-

supervised word segmentation, without harnessing bilingual

information.

f i: l @ n d a N k

thank you

Figure 6: The phonemes of vielen dank as aligned to thank

you by PISA’s Model 3P.

5. Qualitative Evaluation

To appreciate the peculiarities and differences of these ap-

proaches, we will now consider some general observa-

tions made by examining the lexicons of the various ap-

proaches, discussing some representative lexical entries and

word alignments.

Model 3P seemed generally more susceptible to off-

by-one errors at the boundaries of entries. A high con-

fidence, but incorrect, entry that occurred in the lexicon

based on Model 3P alignments was i:l@ndaNk⇔you (‘vie-

len dank’). The English makes some sense, as vielen dank

can be translated as ‘thank you’ or ‘thank you very much’,

although the ‘thank’ component on the English side is miss-

ing. Notably, the German side is segmented incorrectly at the

phrase boundary, missing the initial phoneme ‘f’ (it should

be ‘fi:l@ndaNk’). It turns out that in sentences containing

this German phoneme sequence, the ‘f’ is often aligned to

English ‘thank’ (see Figure 6). In the lexicons created by

both Bayes ITG and UWS GIZA++ this entry was correctly

phrase-segmented as ‘fi:l@ndaNk’.

A similar such entry in the Model 3P lexicon was

daspa6la:mEn⇔parliament, where the source side is miss-

ing the final ‘t’. In the lexicon constructed using Bayes ITG,

such boundary mistakes were scarce. The equivalent entry

was daspa6la:mEnt⇔parliament (‘das Parlament’). Note

that this entry was not considered strictly correct nor cor-

rectly segmented, as it is comprised of two words, with the

German article being included. However in this case, as in

almost all others, Bayes ITG still segments correctly at the

boundaries of multiword units (as distinct from correctly seg-



mented individual words). One of the instances of an entry

annotated as incorrect in the top 500 entries of the Bayes

ITG lexicon where the phoneme side was also incorrectly

segmented was tvo6d@n⇔been, where there is a spurious

‘t’ prefixing the phonemic representation of ‘worden’. In-

vestigating the alignments highlights the cause of this entry.

Phoneme sequences such as Unt6StYtstvO6d@n (‘unterstützt

worden’) and ?E6RaICtvO6d@n (‘erreicht worden’) include

verbs that often appear inflected with different suffixes else-

where, but end in ‘t’ when occurring before vO6d@n (‘un-

terstützen’ and ‘erreichen’ respectively, with the suffix ‘-en’).

High correlation of vO6d@n (‘worden’) and the suffix ‘t’

likely caused this entry.

The lexicon constructed using Model 3P demonstrated an

apparent bias to shorter units. In that lexicon, the above en-

try was segmented correctly as vO6d@n. On the other hand,

Bayes ITG tended to learn towards longer multiword units, as

a result of the model’s capacity to capture phrases at coarser

granularities. po:Ete:6RIN⇔Mr Poettering was present in

the Bayes ITG lexicon, but not in the others. The title is

missing on the source side. This can be attributed to varying

morphology of the title, which takes the form of both ‘Herr’

and ‘Herrn’ depending on context. However, since the En-

glish side consistently takes the form of ‘Mr Poettering’, ev-

idence is built up primarily to relate both the title and name

on the English side to only the name on the phoneme side.

For all the alignment approaches, there were

many entries that are justified given only the infor-

mation present in the corpus. The above example,

daspa6la:mEn⇔parliament, is one such example and is

arguably correct in some contexts (consider the phrase das

Parlament lehnte den Antrag ab⇔Parliament rejected the

request). This entry can be attributed to linguistic differences

that possibly no alignment algorithm can overcome, with

the article often being optional in English translations. In

general, the entries Bayes ITG presented us with tend to be

interpretable with respect to how phoneme sequences occur

in the corpus.

UWS GIZA++ yielded the high confidence, yet erro-

neous, entries t?⇔is, n?⇔to, n?⇔of, which didn’t occur in

the other lexicons. This is likely a result of the pipelined

nature of the approach, where monolingual segmentation is

first performed before alignment. The German components

to these entries represent frequently occurring phonemic se-

quences (many words end with ‘t’ or ‘n’ and many start with

a glottal stop, ‘?’, before some vowel). The English sides

represent function words that are so commonly occurring

that the coincidental cooccurrence of these phonemes and

English words allowed them to become extracted lexical en-

tries, which were not obtained using Bayes ITG or Model

3P. Entries such as this partly explain why UWS GIZA++

failed to perform as well as Model 3P in segmenting lexical

entries despite outperforming it in bilingual precision. The

other likely reason is that chunks that cross word boundaries

learnt during monolingual segmentation cannot be undone.

6. Conclusion

We compared four representative approaches, evaluating the

quality of monolingual and bilingual lexical entries. While

two of the techniques had been previously established for the

task of phoneme–word alignment, we achieved performance

improvements by applying models that had not previously

been considered for this task, demonstrating that hundreds

of bilingual lexicon entries can be learnt with as few as 1k

sentences of bilingual data. This can be done despite using

an unsegmented phonemic representation of the source side.

Such approaches may be used to indicate what can be

inferred from corpora of interleaved audio in the absence of

reliable segmentation, aid in post-mortem linguistic analysis

of a language, and to bootstrap ASR systems in order to help

improve their phoneme recognition.
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