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Abstract

This paper presents a novel training algorithm for Hidden
Markov Model (HMM)-based speech synthesis. One of the
biggest issues causing significant quality degradation in syn-
thetic speech is the over-smoothing effect often observed in gen-
erated speech parameter trajectories. Recently, we have found
that a Modulation Spectrum (MS) of the generated speech pa-
rameters is sensitively correlated with the over-smoothing ef-
fect, and have proposed the parameter generation algorithm
considering the MS. The over-smoothing effect is effectively
alleviated by the proposed parameter generation algorithm. On
the other hand, it loses the computationally-efficient generation
processing of the conventional generation algorithm. In this pa-
per, the MS is integrated into the training stage instead of the
parameter generation stage in a similar manner as our previous
work on Gaussian Mixture Model (GMM)-based spectral pa-
rameter trajectory conversion. The trajectory HMM is trained
with a novel objective function consisting of both the conven-
tional trajectory HMM likelihood and a newly implemented MS
likelihood. This training framework is further extended to the
Fo component. The experimental results demonstrate that the
proposed algorithm yields improvements in synthetic speech
quality while preserving a capability of the computationally-
efficient generation processing.

Index Terms: HMM-based speech synthesis, over-smoothing,
global variance, modulation spectrum, trajectory training

1. Introduction

Statistical parametric speech synthesis based on Hidden
Markov Models (HMMs) [1] is an effective framework for gen-
erating diverse types of synthetic speech. Speech parameters,
i.e., spectral and excitation features and HMM-state duration
are simultaneously modeled with context-dependent HMMs in
a unified framework [2]. In synthesis, the speech parameter
trajectories are generated by maximizing the likelihood of the
HMMs [3]. This approach allows us not only to apply sev-
eral techniques for flexibly controlling synthetic speech [4, 5, 6]
to various speech-based systems [7, 8], but also to build the
speech synthesizer without complicated tuning compared to
sample-based [9] or deep neural nets-based [10] speech syn-
thesis. The further merit of HMM-based speech synthesis is
the computationally-efficient speech parameter generation [3].
This generation algorithm is very helpful to deploy the speech-
based systems that need the fast speech synthesis, e.g., speech-
to-speech translation system [11].

One of the critical problems in HMM-based speech syn-
thesis is that the parameter trajectories generated from the
HMMs are often over-smoothed. This phenomenon causes
significant degradation of the perceptual quality and makes
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synthetic speech sound muffled [12]. To address this over-
smoothing problem, we have found Modulation Spectrum (MS)
[13, 14, 15] as a feature well quantify the over-smoothing effect.
The MS is defined as the power spectrum of the speech param-
eter trajectories, and is regarded as an extension of the Global
Variance (GV) [16]. The MS of the generated trajectories is
often lower than that of natural speech parameter trajectories.
[17] integrated a metric on the MS into the parameter genera-
tion algorithm to keep the MS close to natural one, and they re-
ported the improvements in synthetic speech quality. However,
as [18, 19, 20] reported in the parameter generation consider-
ing the GV, the parameter generation algorithm considering the
MS also loses the conventional computationally-efficient gen-
eration ability because the objective function in synthesis does
not solved in a closed form.

As a method to recover such features while adopting the
computationally-efficient generation algorithm, [21] have pro-
posed a metric to integrate the GV into the training stage instead
of the synthesis stage. They reformulated trajectory HMMs [22]
imposing the constraint between the static and dynamic fea-
tures for spectral and Fjy components. By training the trajectory
HMMs with the GV constraint, the computationally-efficient
generation algorithm is straightforwardly adopted, but quality
benefits by the GV metric is observed in synthetic speech. We
can expect that same reformulation with the MS will give us the
further gain in synthetic speech quality.

This paper proposes the MS-constrained trajectory training
algorithm to HMM-based speech synthesis in the same manner
as our previous work [23] on Gaussian Mixture Model (GMM)-
based voice conversion [24]. The trajectory HMM is trained
with a novel objective function consisting of both the conven-
tional trajectory HMM likelihood and a newly implemented MS
likelihood. This training framework is further extended to the
Fpy component. The proposed training algorithm is compared to
the basic training [2], the conventional trajectory training [22],
and GV-constrained trajectory training [21] in term of synthetic
speech quality. The result demonstrates the proposed training
algorithm achieves the best synthetic speech quality compared
to these training algorithms.

2. Basic Framework [2]
2.1. Training Algorithm [1]
In HMM-based speech synthesis, A HMM parameter set

A is estimated using the contextual factor sequence X
of input text and the speech feature sequence Y

[YlT, ce ,YtT, BN Y;]T of T frames as follows:

A = argmax Lpasic = argmax P (Y| X, A).
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The output probability density function of HMM-state index ¢
is given as:

P(Yt|X7Q7>‘):N(Yi;’J'q72q)> (2)
where Y is given by 3D-dimensional joint static and dy-
namic feature vectors, [ytT , AytT, AAytT ] T, where y, =
[ye (1), ,y:(d), -+ ,y: (D)]" is represented as a D-
dimensional vector at frame ¢, and d is a dimensional index.
N (+; pu, X) denotes Gaussian distribution of a mean vector p
and a covariance matrix 3. The HMM parameter set A consists

(QQ HMM-states where each HMM-state has the individual mean
vector p, and covariance matrix 3.

2.2. Parameter Generation Algorithm [3]

Given the contextual factor sequence X, the generated param-
. _ N T . .

eter sequence §; = [le, ce ,y:, ce ,y;] is analytically

determined by maximizing the output probability of the speech

feature vector sequence target Y given X under a constraint

Y = Wy as follows:

P argmax P (Wy|X, 4, A)
Yy

3

-1
Ry'rg=(W'D;'W) W'D Eq, (4)

where W is a 3DT-by-DT weight matrix to calculate the
dynamic features [3]. § = [§1, - ,Gs, - ,Gr] is the sub-
optimum state sequence determined by maximizing state du-
ration probability distribution function P (g| X, A), where g, is
a sub-optimum HMM-state index at frame ¢. The mean vector
E; = [u(;, ce 7“«;7 ce ,p:;T] " and the covariance matrix
Dy = diagsp [X4,, - , X4, - , Dgp] are calculated using
the corresponding HMM-state, where the notation diags, de-
notes the construction of a block diagonal matrix that has the
3D-by-3D diagonal elements.

3. Trajectory Training [22]

Trajectory HMM is reformulated by imposing the constraint be-
tween the static and dynamic features. The objective function
for the trajectory training is written as:

Luj = P (y|X,4.2) =N (y:94, Ry ) - ®)
The mean vector g4 is given by Eq. (4) and the inter-frame
correlation is effectively modeled by the temporal covariance

matrix R;l. In training, the HMM parameters are updated by
maximizing Ly,j.

3.1. Estimation of Model Parameters

7“37"'7“5}17 and

be the joint parameters of

Here, let p [/1,1T, .

-1 -1 11T
[21 ERR > e 72@ ]

p, and 3o ! over all HMM-states, respectively. The mean

vector E4 and the precision matrix D;l are represented as:

Eq Sqp, (0)

D! diag;p [SZ '], ©)

where Sg = [S4,, - ,S4,] ® I3p is a 3DT-by-3DQ ma-

trix, S, is an M-dimensional vector of which the g-th compo-

nent is 1 when ¢ = §; and otherwise are 0 as shown in Fig. 1,
and I3p indicates the 3D-by-3D identity matrix.

To optimize these model parameters for the objective func-
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Figure 1: Graphic representation between variables used in this
paper.

tion, we employ the steepest descent algorithm. as follows:
0log Lij

ptD = @ 4 g
o

®

)
=)
where a is a learning rate, and i is an iteration index. X! are
also optimized in the same manner. The gradients are given by:

0log Liyj _ R
Ton = SiDaW(y—9a). ©
Olog Ly o _ L
Sesil = Sidiagsh (W (Rg' 49495 —wy")
—E4 (95— y)T w'—-w (95— v) E,,T] ,(10)

4. Global Variance (GV)-Constrained
Trajectory Training [21]
4.1. Global Variance (GV) [16]
The GV v (y) = [v(1),---,v(D)]" is defined as the second

order moment of the trajectory y, and its d-th component is
given as:

(11

(yt (@)~ 5> ur (d)) .

4.2. Objective Function for GV-Constrained Training

{m, 37!} is updated by maximizing the following objective
function Lg.¢,j consisting of the trajectory HMM and GV like-
lihoods:

Lgvei = P (y1X, @, 0) P (v (y) X, 4, A A)"7", (12)
P(v(y)|X,4,2A) =N (v(y);v(9;),.2), (13)
where wy is a weight of the GV likelihood, X is a covariance
matrix of the GV, and A, is a model parameter set of the GV.

This algorithm updates the model parameters to make the GV
of the generated parameter sequence close to natural one.

5. Modulation Spectrum (MS)-Constrained
Trajectory Training
5.1. Modulation Spectrum [13]

The MS is defined as the power spectrum of the parameter se-
quence; i.e., temporal fuctuation of the parameter sequence is



decomposed into individual modulation frequency components
and their power values are represented as the MS. In this paper,
the MS s (y) of the parameter sequence y is defined as:

s(y) = [s(l)T,«««,s(d)T,---,s(D)T]T, (14)
s(d) = [sa(0),---,sa(f), -, sa(DL—1)]" (15)
sa(f) = Rij+1Ii; (16)

<Z yt (d) cos kt) + <Z Yt (d) sin kt>(17)

where 2Dy is a length of Discrete Fourier Transform (DFT),
k = —m f/Ds is a modulation frequency, f is a modulation fre-
quency index, and DY is the number of MS dimension in each
feature dimension, where D/ < Ds. We can control the highest
modulation frequency considered in this criterion by adjusting
the ratio of Dy to Dy. In this paper, the MS is calculated utter-
ance by utterance.

5.2. Objective Function for MS-Constrained Trajectory
Training

We integrate the MS compensation into the trajectory training.
The objective function consists of both the trajectory likelihood
and the MS likelihood as follows:

Lustrj = P (] X, @, ) P (s (y) | X, 4, A, )7/ (18)
P(s(y)|X,q,XX) =N (s(y);s(d4),2s), (19)

where X is a model parameter set of the MS, and X is a D, D-
by-D. D covariance matrix, and ws is a weight of the MS likeli-
hood. The trajectory likelihood and the MS likelihood are nor-
malized by the ratio of the number of feature dimensions when

ws = 1. 37! is represented as [pé”, e ,péd), e ,péD)],

where p£d> is D’ D-by-D matrix of which columns correspond
to s (d). The MS likelihood works as a penalty term to alle-
viate the reduction of the temporal fluctuation of the generated
parameter sequence. X is in advance estimated using training
data.

5.3. Estimation of Model Parameters

The model parameters are estimated in the same way as for GV-
constrained trajectory training. Let L,s be the MS likelihood
N (s(y);s(94),%s). The logarithm function of Lumstrj is
given by:

T
lOg Lmstrj = lOg Ltrj + Ws — 10g LmS7

o (20)
and the gradients of log L, are given as:
0log Lims _ _
o = S;D;'WR'sq, @1
0log Lims - — N
% =S§diagsp [WR;'sq (Eq — W,)] (22)
where
' T Al 1 T T
Sg = |:Sl sy 8t 8T ] ) (23)
s; = [St(l)f”7St(d)7"'7st(D)]T7 (24)
T -~
se(d) = 2f (@)pl" (s(y)—s(@)), (25)
Fold) = [froa(0), -, fra(f), - fra (Di—1)]'26)
fra(f) = Rd,f cos kt + fd,f sin kt, 27
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Figure 2: An example of the output probabilities of HMMs
trained by several training algorithms.

where I:Zd, ¢ and I a,7 are calculated using the d-th dimensional
components of § 4.

5.4. Discussion

As reported in [23, 21], it is unnecessary to consider the
MS in parameter generation because the HMM parameters
are optimized to make the MS of the generated parameter
sequence close to the natural one. Consequently, the ba-
sic computationally-efficient parameter generation algorithm is
employed. This also enables to avoid the large footprint dis-
cussed in the parameter generation algorithm considering the
MS [17].

Multi-Space probability Distribution (MSD)-HMM [25] is
unsuitable for the implementation of the proposed algorithm for
Fp contour because the MS modeling of the non-continuous se-
quence is inaccurate [17]. To solve this problem, this paper
adopted continuous Fy modeling [26]. Moreover, 0-mean MS
modeling is also adopted [17], which means that the MS is cal-
culated from the Fy contour that the utterance-level Fy is sub-
tracted.

Fig. 2 draws the output probabilities at each frame. We can
see that the variance of trajectory training (“TRJ”) is slightly
larger than that of basic training (“BSC”), and the mean of GV-
constrained (“GV”) or MS-constrained (“MS”) trajectory train-
ing is significantly changed compared to “TRJ.” It is observed
that the mean of “MS” tends to transit greatly from the neighbor
HMM-state'.

6. Experimental Evaluation
6.1. Experimental Condition

We trained a context-dependent phoneme Hidden Semi-Markov
Model (HSMM) [27] for an English male speaker "RMS” from
the CMU ARCTIC database [28]. We used 593 sentences from
subset A for training and 100 sentences from subset B for evalu-
ation. Speech signals were sampled at 16 kHz. The shift length
was set to 5 ms. The Oth-through-24th mel-cepstral coefficients
were extracted as a spectral parameter and log-scaled Fp and
5 band-aperiodicity [29, 30] were extracted as excitation pa-

'Note that the frames that have same statistics correspond to the
same HMM -state.
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Figure 3: Trajectory likelihoods for the natural spectral param-
eter sequence and continuous Fp contour.
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Figure 4: MS likelihoods for the natural spectral parameter se-
quence and continuous Fy contour.

rameters. The STRAIGHT analysis-synthesis system [31] was
employed for parameter extraction and waveform generation.
The feature vector consisted of spectral and excitation parame-
ters and their delta and delta-delta features. 5-state left-to-right
HSMMs were used. The DFT length to calculate the MS was set
to 2048. Diagonal covariance matrices were used in the HSMM,
the GV probability density function, and the MS probability
density function. The likelihood weight w, and ws were set to
0.5 [21] and 1.0, respectively. D’ for spectrum and Fy compo-
nents were set to D /2(= 50 Hz) [23] and D,/10(= 10 Hz)
[13], respectively.
‘We compared the following training algorithms:

BSC: basic training (Lbasic) [2]

TR]: trajectory training (L+.j) [22]

GYV: GV-constrained trajectory training (Lgvtrj) [21]

MS: proposed MS-constrained trajectory training (Lmstrj)

These training algorithms were applied to spectral and Fp com-
ponents, and the “BSC” training algorithm was applied to ape-
riodic component. First, “BSC” training is performed to esti-
mate the HMM parameter set A, then, “TRJ” training algorithm
updates the parameters. “GV” and “MS” training algorithm up-
dates after “TRJ” training. Note that the voiced/unvoiced re-
gions of Fy contour never changes in all training algorithms.

The trajectory likelihood and the MS likelihood for the nat-
ural parameter trajectories of the evaluation data were firstly
calculated to analyze the effect of the proposed algorithm.
Then, the speech quality of the synthetic speech are evaluated
in the perceptual evaluation.

6.2. Objective Evaluation

Fig. 3 and Fig. 4 illustrate the trajectory likelihood L,; and the
MS likelihood L.y, for the natural parameter trajectories of the
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Figure 5: Preference scores on synthetic speech quality with
95% confidence interval.

evaluation data, respectively. Note that the trajectory likelihood
is normalized by the total number of frames 7", and the MS like-
lihood is similarly normalized by the number of dimension D.
We can see that the proposed MS-constrained trajectory train-
ing (“MS”) dramatically improves the MS likelihood compared
to other training algorithms for the spectral component. On the
other hand, the MS likelihood of “MS” is lower than that of
the basic training algorithm (“BSC”) for Fy component. To
discuss this result, we calculated the proposed objective func-
tion divided by 7', and the values are —12.64 and —12.35 for
“BSC” and “MS,” respectively. Therefore, the proposed objec-
tive function is certainly improved by the proposed algorithm.
Therefore, we can confirm the implementation of the proposed
algorithm for both spectral and F; components.

6.3. Subjective Evaluation

A preference AB test was conducted by 6 listeners. We pre-
sented every pair of generated speech of 4 training algorithms
in a random order, and we forced listeners to select speech sam-
ple that sounds better quality.

Fig. 5 illustrates the result. We can see that the proposed
algorithm “MS” achieves the best score. This result demon-
strates that the proposed MS-constrained trajectory training for
spectral and Fyp components makes it possible to improve the
synthetic speech quality while preserving the computationally-
efficient generation ability.

7. Conclusion

This paper proposed a novel training algorithm for HMM-based
speech synthesis in order to produce the high-quality speech
while preserving the computationally-efficient generation algo-
rithm. The Modulation Spectrum (MS) have been integrated
into the trajectory HMM training for both spectral and Fy com-
ponents. The experimental results yielded the quality improve-
ment in synthetic speech. As a future work, we combine both
the proposed algorithm and the rich context modeling [32].
Acknowledgements: Part of this work was supported by
JSPS KAKENHI Grant Number 26280060 and Grant-in-Aid
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