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Abstract
This paper presents techniques to improve the quality of voices
generated through statistical singing voice conversion with
direct waveform modification based on spectrum differential
(DIFFSVC). The DIFFSVC method makes it possible to con-
vert singing voice characteristics of a source singer into those
of a target singer without using vocoder-based waveform gen-
eration. However, quality of the converted singing voice still
degrades compared to that of a natural singing voice due to var-
ious factors, such as the over-smoothing of the converted spec-
tral parameter trajectory. To alleviate this over-smoothing, we
propose a technique to restore the global variance of the con-
verted spectral parameter trajectory within the framework of
the DIFFSVC method. We also propose another technique to
specifically avoid over-smoothing at unvoiced frames. Results
of subjective and objective evaluations demonstrate that the pro-
posed techniques significantly improve speech quality of the
converted singing voice while preserving the conversion accu-
racy of singer identity compared to the conventional DIFFSVC.
Index Terms: statistical singing voice conversion, direct wave-
form modification, spectral differential, global variance, Gaus-
sian mixture model

1. Introduction
A singing voice is one of the most expressive components in
music. In addition to pitch, dynamics, and rhythm, the linguis-
tic information of the lyrics can be used by singers to express
more varieties of expression than other music instruments. Al-
though singers can also expressively control their voice timbre
to some degree, they usually have a difficulty in changing it
widely (e.g. changing their own voice timbre into that of an-
other specific singer) owing to physical constraints in speech
production. If singers could freely control their voice timbre
beyond their physical constraints, it would open up entirely new
ways for singers to express more varieties of expression.

Singing synthesis [1, 2, 3] has been a growing interest in
computer-based music technology. Entering notes and lyrics to
the singing synthesis engine, users (e.g., composers and singers)
can easily produce a synthesized singing voice which has a spe-
cific singer’s voice characteristics, different from those of the
users. Previous work has proposed techniques to flexibly con-
trol the synthesized singing voice as the users want by automat-
ically adjusting parameters of the singing synthesis engine so
that the variation of power and pitch in the synthesized singing
voice is similar to that of the given users’ natural singing voice
[4, 5]. Although these technologies using singing synthesis en-
gines are effective to produce the singing voices desired by the
users, it is essentially difficult to produce synthesized singing
voices by controlling all singing voice components including

lyrics on the fly.
Singing voice conversion (SVC), on the other hand, con-

verts a source singer’s singing voice into another target singer’s
singing voice [6, 7]. This makes it possible to produce the de-
sired singing voices on the fly, enabling singers to sing songs
with their desired voice timbre, not limited by physical con-
straints. One of the typical methods is based on statistical
voice conversion (VC) techniques [8, 9]. A conversion model is
trained in advance using acoustic features, which are extracted
from a parallel data set of song pairs sung by the source and tar-
get singers. The trained conversion model makes it possible to
convert the acoustic features of the source singer’s singing voice
into those of the target singer’s singing voice in any song while
keeping the linguistic information of the lyrics unchanged. Re-
cently eigenvoice conversion (EVC) techniques [10, 11] have
also been successfully applied to SVC [12] to develop more
flexible SVC systems capable of achieving conversion between
arbitrary source and target singers, even if a parallel data set
is not available. However, speech quality of the singing voice
converted by SVC is usually degraded compared to that of the
natural singing voice due to various errors caused by not only
the acoustic feature conversion process, but also the vocoding
process for waveform generation.

To improve speech quality of the converted singing voice,
we have proposed an SVC method with direct waveform
modification based on spectrum differential (DIFFSVC) [13].
DIFFSVC can avoid using the vocoder framework in genera-
tion of the excitation signal by directly filtering an input singing
voice waveform with a time sequence of spectral feature dif-
ferentials estimated by a differential Gaussian mixture model
(GMM) derived from the conventional GMM used in the stan-
dard SVC method. Although DIFFSVC is applicable to only
situations in which pitch conversion is not necessary (such as in
intra gender conversion), voice timbre of the input singing voice
can be successfully converted into that of the target singer while
achieving speech quality significantly higher than the standard
SVC method. The direct waveform filtering tends to keep mod-
ulation components of the converted spectral parameter trajec-
tory larger compared to those in the standard SVC with the
vocoder-based waveform generation. However, they are still
significantly smaller than those of natural spectral parameter
trajectories as the converted spectral parameter trajectory tends
to be excessively smoothed. This over-smoothing effect is well–
known as a factor causing quality degradation in the synthesized
sining voice.

In this paper, to alleviate the over-smoothing effect, we pro-
pose a parameter generation algorithm considering global vari-
ance (GV) for DIFFSVC. GV is a well-known feature to mea-
sure the over-smoothing effect [9]. To restore the GV of the
converted spectral parameter trajectory, we modify the objective
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function to determine a time sequence of the spectral differen-
tial. Additionally, we implement a process smoothing the spec-
tral differential at unvoiced frames to avoid the over-smoothing
effect at unvoiced sounds. We conduct subjective and objective
evaluations, demonstrating that the proposed DIFFSVC method
significantly improves speech quality of the converted singing
voice compared to the conventional DIFFSVC method.

2. Statistical singing voice conversion with
direct waveform modification (DIFFSVC)

DIFFSVC consists of a training process and a conversion pro-
cess. In the training process, a joint probability density func-
tion of spectral features of a source singer and the differential
between the source and target singers is modeled with a differ-
ential GMM, which is directly derived from a traditional GMM.
As the spectral features of the source and target singers, we em-
ploy 2D-dimensional joint static and dynamic feature vectors
Xt = [x⊤

t ,∆x⊤
t ]

⊤ of the source and Y t = [y⊤
t ,∆y⊤

t ]
⊤ of

the target consisting of D-dimensional static feature vectors xt

and yt and their dynamic feature vectors ∆xt and ∆yt at frame
t, respectively, where ⊤ denotes the transposition of the vector.
As shown in [7], their joint probability density modeled by the
GMM is given by

P (Xt,Y t|λ)

=
M∑

m=1

αmN
([

Xt

Y t

]
;

[
µ(X)

m

µ(Y )
m

]
,

[
Σ(XX)

m Σ(XY )
m

Σ(Y X)
m Σ(Y Y )

m

])
(1)

where N (·;µ,Σ) denotes a Gaussian distribution with a mean
vector µ and a covariance matrix Σ. The mixture compo-
nent index is m. The total number of mixture components
is M . λ is a GMM parameter set consisting of the mixture-
component weight αm, the mean vector µm, and the covari-
ance matrix Σm of the m-th mixture component. The GMM
is trained using joint vectors of Xt and Y t in the parallel data
set, which are automatically aligned to each other by dynamic
time warping. Then, the differential GMM is analytically de-
rived from the trained GMM by transforming the parameters.
Let Dt =

[
d⊤
t ,∆d⊤

t

]⊤ denote the static and dynamic differ-
ential feature vector, where dt = yt−xt. The joint probability
density function of the source and differential spectral features
is shown as follows:

P (Xt,Dt|λ)

=
M∑

m=1

αmN
([

Xt

Dt

]
;

[
µ(X)

m

µ(D)
m

]
,

[
Σ(XX)

m Σ(XD)
m

Σ(DX)
m Σ(DD)

m

])
(2)

µ(D)
m = µ(Y )

m − µ(X)
m (3)

Σ(XD)
m = Σ(DX)

m
⊤
= Σ(XY )

m −Σ(XX)
m (4)

Σ(DD)
m = Σ(XX)

m +Σ(Y Y )
m −Σ(XY )

m −Σ(Y X)
m . (5)

In the conversion process, the converted spectral feature dif-
ferential is estimated from the source singer’s spectral features
based on the differential GMM in the same manner as maximum
likelihood estimation of speech parameter trajectory with the
GMM [9]. The voice timbre of the source singer is converted
into that of the target singer by directly filtering the speech
waveform of the input natural singing voice with the con-
verted spectral feature differential. Time sequence vectors of

the source features and the spectrum feature differential are de-
noted as X = [X⊤

1 , · · · ,X⊤
T ]

⊤ and D = [D⊤
1 , · · · ,D⊤

T ]
⊤

where T is the number of frames included in the time sequence
of the given source feature vectors. A time sequence vector of
the converted static features d̂ = [d̂

⊤
1 , · · · , d̂

⊤
T ]

⊤ is determined
as follows:

d̂ = argmax
d

P (D|X,λ) s.t. D = Wd (6)

P (D|X,λ) =
T∏

t=1

M∑

m=1

P (m|Xt,λ)P (Dt|m,Xt,λ) (7)

where W is a transformation matrix to expand the static feature
vector sequence into the joint static and dynamic feature vector
sequence [14] and the probability density function at frame t is
given by

P (Dt|m,Xt,λ) = N
(
Dt ;E

(D)
m,t,V

(D)
m

)
(8)

E(D)
m,t = µ(D)

m +Σ(DX)
m Σ(XX)

m
−1
(
Xt − µ(X)

m

)
(9)

V (D)
m = Σ(DD)

m −Σ(DX)
m Σ(XX)

m
−1

Σ(XD)
m . (10)

3. DIFFSVC considering global variance
In order to improve the speech quality of the converted singing
voice in DIFFSVC, we propose two techniques: 1) restoration
of the GV of the converted spectral feature trajectory and 2)
smoothing of the converted spectral feature differential at un-
voiced frames.

The GV of the target static feature vector over the time se-
quence is written as

v(y) = [v(1), v(2), · · · , v(d), · · · , v(D)]⊤ (11)

v(d) =
1
T

T∑

t=1

(yt(d)− ȳ(d))2 (12)

ȳ(d) =
1
T

T∑

τ=1

yτ (d) (13)

where yt(d) shows the d-th component of the target feature vec-
tor at frame t. The probability density function of the GV is
modeled as follows:

P
(
v(y) | λ(v)

)
= N

(
v(y) ; µ(v), Σ(vv)

)
(14)

where λ(v) is a parameter set of a Gaussian distribution for
which the mean vector and covariance matrix are µ(v) and
Σ(vv), respectively. The converted feature differential trajec-
tory is determined by maximizing a new objective function as
follows:

d̂ = argmax
d

P (D|X,λ)ωP (v(y′)|λ(v)) s.t. D = Wd (15)

where y′ = [x + d] and the constant ω denotes a parameter
for controlling the balance between the two likelihoods. The
converted feature differential trajectory is iteratively updated by
using the steepest descent method as follows:

d̂
(i+1)−th

= d̂
(i)−th

+ α ·∆d̂
(i)−th

(16)
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where α is a step size parameter. The gradient vector ∆d̂
(i)−th

is given by

∆d(i)−th =
∂L
∂d

∣∣∣∣∣
d=d(i)−th

(17)

∂L
∂d

= ω
(
−W⊤V (D)

m
−1

Wd+W⊤V (D)
m

−1
E(D)

m

)

+
[
v′
1
⊤
, v′

2
⊤
, · · · , v′

t
⊤
, · · · , v′

T
⊤
]⊤

(18)

E(D)
m =

[
E(D)

m1,1
, · · · ,E(D)

mt,t, · · · ,E
(D)
mT ,T

]⊤
(19)

V (D)
m

−1
= diag

[
V (D)

m1

−1
, · · · ,V (D)

mt

−1
, · · · ,V (D)

mT

−1
]

(20)

v′
t =

[
v′t(1), v

′
t(2), · · · , v′t(d), · · · , v′t(D)

]⊤ (21)

v′t(d) = − 2
T
p(v)(d)

⊤ (
v(y′)− µ(v)

) (
y′
t(d)− ȳ′(d)

)

(22)

where p(v)(d) indicates the d-th column vector of the inverse
matrix of Σ(vv). An initial feature differential trajectory for the
iterative update is determined by filtering in the conventional
DIFFSVC as follows:

d̂′t(d) =

√
µv(d)
v(d)

(ŷt(d)− ŷ(d)) + ŷ(d)− xt(d) (23)

where ŷt(d) indicates the converted feature at frame t deter-
mined by the conventional DIFFSVC and ŷ(d) indicates its av-
erage over a time sequence.

It has been reported that unvoiced consonants (e.g. /s/, /sh/)
are less affected by speaker individuality compared to voiced
sounds (e.g. /ae/, /n/) in normal speech [15]. Based on this
finding, in order to alleviate the over-smoothing effect as much
as possible, we minimize the amount of conversion at unvoiced
frames by smoothing the converted feature differential at those
frames. We implement this process on top of the previously
described DIFFSVC with GV by modifying E(D)

m,t and V (D)
m

−1

at unvoiced frames as follows:

E(D)
m,t =

{
0 (for static & delta) (24)

V (D)
m

−1
=

{
0 (for static)
V (∆D)

m
−1

(for delta)
(25)

where V (∆D)
m

−1
shows delta components of the inverse matrix

of the covariance matrix in Eq. (8). These parameter modifica-
tions make the converted spectral feature differential smoothly
vary at unvoiced frames. Note that we avoid updating the con-
verted spectral feature differential at the unvoiced frames in Eq.
(16).

4. Experimental evaluation
4.1. Experimental conditions

We evaluated speech quality and singer identity of the con-
verted singing voices to compare the conventional and proposed
DIFFSVC methods. We used singing voices of 21 Japanese tra-
ditional songs, which were divided into 152 phrases, where the
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Figure 1: Results of preference test. (a) speech quality of con-
verted singing voice, (b) conversion accuracy of singer individ-
uality.

duration of each phrase was approximately 8 seconds. 3 males
and 3 females sang these phrases. The sampling frequency was
set to 16 kHz.

STRAIGHT [16] was used to extract spectral envelopes,
which were parameterized to the 1-24th mel-cepstral coeffi-
cients as the spectral features. The frame shift was 5 ms. The
mel log spectrum approximation (MLSA) filter [17] was used
as the synthesis filter.

We used 80 randomly selected phrases for the GMM train-
ing and the remaining 72 phrases were used for evaluation.
The speaker-dependent GMMs were separately trained for indi-
vidual singer pairs determined in a round-robin fashion within
intra-gender singers. The number of mixture components was
128.

Two preference tests were conducted. The first test evalu-
ated speech quality of the converted singing voices. The con-
verted singing voice samples of the conventional and proposed
DIFFSVC methods for the same phrase were presented to lis-
teners in random order. The listeners selected which sample
had better sound quality. The second preference test evaluated
the singer identity conversion accuracy. A natural singing voice
sample of the target singer was presented to the listeners first
as a reference. Then, the converted singing voice samples of
the conventional and proposed DIFFSVC methods for the same
phrase were presented in random order. The listeners selected
which sample was more similar to the reference natural singing
voice in terms of singer identity. The number of listeners was 6
and each listener evaluated 54 sample pairs. They were allowed
to replay each sample pair as many times as necessary.

4.2. Subjective evaluation

Figure 1 (a) indicates the result of the preference test for the
speech quality. The proposed DIFFSVC method generates the
converted speech with better speech quality than the conven-
tional DIFFSVC method. Figure 1 (b) indicates the result of the
preference test for the singer identity. The conversion accuracy
of the singer identity of the proposed DIFFSVC method is not
significantly different from that of the conventional DIFFSVC
method. Although the proposed DIFFSVC method avoids ac-
curately converting spectral features at unvoiced frames, it still
yields conversion accuracy of singer individuality almost equal
to that of the conventional DIFFSVC method.

These results demonstrate that the proposed DIFFSVC
method is capable of converting voice timbre with higher
speech quality while causing no degradation in the conver-
sion accuracy of singer identity compared to the conventional
DIFFSVC method.
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Figure 2: Example of trajectories of spectral feature sequences. Note that the duration of “Target” trajectories is different from the
other trajectories.

4.3. Analysis of converted feature trajectories

To more deeply analyze what yields naturalness improvements
in the proposed DIFFSVC method, we examine in detail the
spectral feature trajectories of singing voices, which are given
by

Source mel-cepstral coefficients extracted from the source
singer’s natural singing voice

Target mel-cepstral coefficients extracted from the target
singer’s natural singing voice

w/ GV (estimated) mel-cepstral coefficient differentials esti-
mated with the proposed DIFFSVC method

w/ GV (filtered) mel-cepstral coefficients extracted from the
singing voice converted in the proposed DIFFSVC
method

w/o GV (estimated) mel-cepstral coefficient differentials esti-
mated with the conventional DIFFSVC

w/o GV (filtered) mel-cepstral coefficients extracted from the
singing voice converted in the conventional DIFFSVC
method

Figure 2 shows the individual trajectories and the loga-
rithmic F0 trajectory. It can be observed from “Source” and
“Target” that higher-order mel-cepstral coefficients tend to have
rapidly varying fluctuations. It has been reported in [18] that
these fluctuations are well modeled by the modulation spectrum
and strongly affect speech quality of the converted speech. In
the proposed method (w/ GV (estimated)), the converted fea-
ture differential trajectory is smoothly connected from the end
of voiced segments to the start of voiced frames thanks to the
proposed smoothing process at unvoiced frames. This yields
a converted feature trajectory (w/ GV (filtered)) maintaining
natural fluctuations at unvoiced frames. On the other hand,
these fluctuations are obviously reduced in the conventional
method (w/o GV (filtered)). We can also see that the GV of
the converted feature trajectory at higher-order mel-cepstral co-
efficients is restored more effectively by the proposed method
(w/ GV (filtered)) compared to the conventional method (w/o
GV (filtered)). These results imply that the proposed method
effectively approximates the target spectral fluctuations by us-
ing those of the source spectral trajectory and the GV of the
target spectral trajectory.

Figure 3 shows the GVs calculated from several trajecto-
ries of mel-cepstral coefficients. The GV in the conventional
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Figure 3: GVs of several mel-cepstral sequences.

method “w/o GV (filtered)” significantly decreases compared
to that of “Target.” On the other hand, the GV in the proposed
method “w/ GV (filtered)” is close to that of “Target.” This GV
restoration yields significant improvements in speech quality of
the converted singing voice. Note that the GV of the feature
differential trajectories in the proposed method (w/ GV (esti-
mated)) are still similar to those of the conventional method
(w/o GV (estimated)). This shows the effectiveness of the pro-
posed method modeling not the GV of the differential trajectory
but the GV of the converted trajectory.

5. Conclusions
In order to improve quality of singing voice conversion based on
direct waveform modification (DIFFSVC), we have proposed
DIFFSVC considering global variance and smoothing of the
conversion function at unvoiced frames. The experimental re-
sults have demonstrated that the proposed DIFFSVC method
makes it possible to convert voice timbre of a source singer into
that of a target singer with higher speech quality while not caus-
ing any adverse effects on the conversion accuracy of speaker
identity compared to the conventional DIFFSVC method. In fu-
ture work, we plan to apply the DIFFSVC framework to cross-
gender conversion.
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