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Abstract

This paper presents NTT-NAIST SMT systems for
English-German and German-English MT tasks of the
IWSLT 2014 evaluation campaign. The systems are based
on generalized minimum Bayes risk system combination of
three SMT systems using the forest-to-string, syntactic pre-
ordering, and phrase-based translation formalisms. Individ-
ual systems employ training data selection for domain adap-
tation, truecasing, compound word splitting (for German-
English), interpolated n-gram language models, and hy-
potheses rescoring using recurrent neural network language
models.

1. Introduction
Spoken language is a very important and also challenging
target for machine translation (MT). MT tasks in the IWSLT
evaluation campaign focus on the translation of TED Talks
subtitles. These subtitles tend to be clean transcriptions with
few disfluencies, and the talks themselves are logically and
syntactically well-organized compared to casual conversa-
tions.

In order to take advantage of this fact, our system this
year use syntax-based statistical machine translation (SMT)
techniques, which allow for the use of source-side syntactic
knowledge to improve translation accuracy. Specifically, we
use forest-to-string (F2S) translation and syntax-based pre-
ordering. The overall system was based on a combination
of three systems based on F2S, pre-ordering, and standard
PBMT, and includes domain adaptation of translation and
language models, rescoring using neural network language
models, and compound splitting for German.

Specifically comparing to our system from last year’s
competition [1], we have made two improvements. The first
is that we tested a new hypergraph search algorithm [2] in the
F2S system, and compare it to the more traditional method
of cube pruning. The second is that this year we attempted
to extract pre-ordering rules automatically from parallel cor-
pora, as opposed to hand-designing preordering rules based
on linguistic intuition.

This paper presents details of our systems and reports
the official results together with some detailed discussions
on contributions of the techniques involved.

2. Individual Translation Methods
We use three different translation methods and combine the
results through system combination. Each of the three meth-
ods is described in this section, focusing especially on our
new attempts this year on forest-to-string and pre-ordering.

2.1. Forest-to-String Machine Translation

In our previous year’s submission to IWSLT, we achieved
promising results using the forest-to-string machine transla-
tion (F2S; [3]) framework. F2S is a generalization of tree-
to-string machine translation (T2S; [4]) that performs trans-
lation by first syntactically parsing the source sentence, then
translating from sub-structures of a packed forest of potential
parses to a string in the target language.

We have previously found that F2S produces highly com-
petitive results for language pairs with large divergence in
syntax such as Japanese-English or Japanese-Chinese [5].
However, we have also found that there are several elements
that must be appropriately handled to achieve high transla-
tion accuracy using syntax-driven methods [6], one of which
is search. In the F2S component of our submission to IWSLT
this year, we experimented with two different search algo-
rithms to measure the effect that search has on the German-
English and English-German pairs.

As the first algorithm, we use the standard method for
search in tree-based methods of translation: cube pruning
[7]. For each edge to be expanded, cube pruning sorts the
child hypotheses in descending order of probability, and at
every step pops the highest-scoring hypothesis off the stack,
calculates its language model scores, and adds the popped,
scored edge to the hypergraph. It should be noted that the
LM scores are not calculated until after the edge is popped,
and thus the order of visiting edges is based on only an LM-
free approximation of the true edge score, resulting in search
errors.

In our F2S system this year, we test a new method of hy-
pergraph search [2], which aims to achieve better search ac-
curacy by considering the characteristics of LM states when
deciding the order in which to calculate edges. Particularly,
it exploits the fact that states with identical unigram contexts
are likely to have similar probabilities, and groups these to-
gether at the beginning of the search. It then proceeds to
split these states into bi-gram or higher order contexts gradu-

127

Proceedings of the 11th International Workshop on Spoken Language Translation
Lake Tahoe, December 4th and 5th, 2014



ally, refining the probability estimates until the limit on num-
ber of stack pops is reached. In our previous work [6] we
have found that hypergraph search achieved superior results
to cube pruning, and we hypothesize that these results will
carry over to German-English and English-German as well.

2.2. Syntax-based Pre-ordering

Pre-ordering is a method that attempts to first reorder the
source sentence into a word order that is closer to the tar-
get, then translate using a standard method such as PBMT.
We used hand-crafted German-English pre-ordering rules [8]
in our submission last year. This year’s system uses an au-
tomatic method to extract domain-dependent pre-ordering
rules, avoiding the time-consuming effort required for creat-
ing hand-crafted rules. The pre-ordering method is basically
similar to [9], but is limited to reordering of child nodes in
syntactic parse trees rather than rewriting and word insertion.

Since the pre-ordering does not work perfectly in all
cases, we allow for further reordering in the PBMT system
that translates the preordered sentences. The reordering limit
of this system is chosen experimentally using held-out data
(dev. set BLEU in this paper).

2.2.1. Reordering Pattern Extraction

A reordering pattern represents a reordering of child nodes in
a source language parse tree, determined by word alignment.
The reordering pattern is similar to a tree-based translation
pattern called frontier graph fragments, which form the most
basic unit in tree-based translation [10], but only holds re-
ordering information on the non-terminal child nodes. A re-
ordering pattern can be extracted from an admissible node
[11] in the parse tree that covers a distinct contiguous spans
in the corresponding target language sentences. Since such a
reordering pattern only is constrained by the syntactic labels
on the parent and child nodes, we consider several attributes
of reordering patterns: syntactic labels of its grand-parent,
left and right siblings of the parent, and surface forms of its
child nodes (only when the child is a part-of-speech node).

2.2.2. Deterministic Pre-ordering

In order to make the pre-ordering deterministic, we use re-
ordering rules from dominant reordering patterns that agree
with more than 75% on the same source language subtrees.
Here, additional attributes define more specific rules that are
not applied to the subtrees with different attributes.

We apply these reordering rules greedily to the syntactic
parse tree in descending order of preference from specific
(more attributes) to general (less attributes) rules. If different
rules with the same number of attributes can be applied, the
most probable one is chosen. More details about the method
can be found in [9].

2.3. Standard Phrase-based Translation

Phrase-based machine translation (PBMT; [12]) models the
translation process by splitting the source sentence into
phrases, translating the phrases into target phrases, and re-
ordering the phrases into the target language order. PBMT is
currently the most widely used method in SMT as it is robust,
does not require the availability of linguistic analysis tools,
and achieves high accuracy, particularly for languages with
similar syntactic structure.

3. Additional System Enhancements
Here we review techniques that were used in our submission
last year [1] and also describe some of our new attempts that
were not effective in our pilot test and not included in the
final system.

3.1. Training Data Selection

The target TED domain is different in both style and vocabu-
lary from many of the other bitexts, e.g. Europarl, Common-
Crawl (which we collectively call “general-domain” data).
To address this domain adaption problem, we performed
adaptation training data selection using the method of [13].1

The intuition is to select general-domain sentences that are
similar to in-domain text, while being dis-similar to the aver-
age general-domain text.

To do so, one defines the score of an general-domain sen-
tence pair (e, f) as [14]:

[INE(e)−GENE(e)] + [INF (f)−GENF (f)] (1)

where INE(e) is the length-normalized cross-entropy of e
on the English in-domain LM. GENE(e) is the length-
normalized cross-entropy of e on the English general-domain
LM, which is built from a sub-sample of the general-domain
text. Similarly, INF (f) and GENF (f) are the cross-
entropies of f on Foreign-side LM. Finally, sentence pairs
are ranked according to Eq. 1 and those with scores lower
than some empirically-chosen threshold are added together
with the in-domain bitext for translation model training.
Here, the LMs are Recurrent Neural Network Language
Models (RNNLMs), which have been shown to outperform
n-gram LMs in this problem [13].

3.2. German Compound Word Splitting

German compound words present sparsity challenges for ma-
chine translation. To address this, we split German words
following the general approach of [15]. The idea is to split
a word if the geometric average of its subword frequencies
is larger than whole word frequency. In our implementa-
tion, for each word, we searched for all possible decomposi-
tions into two sub-words, considering the possibility of delet-
ing common German fillers “e”, “es”, and “s” (as in ”Ar-
beit+s+tier”). The unigram frequencies for the subwords and

1Code/scripts available at http://cl.naist.jp/∼kevinduh/a/acl2013
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whole word is computed from the German part of the bitext.
This simple algorithm is especially useful for handling out-
of-vocabulary and rare compound words that have high fre-
quency sub-words in the training data. For the F2S system,
sub-words are given the same POS tag as the original whole
word.

In the evaluation campaign, we performed compound
splitting only in the German-to-English task. We do not at-
tempt to split German words for the English-to-German task,
since it is non-trivial to handle recombination of German split
words after reordering and translation.

3.3. RNNLM Rescoring

Continuous-space language models using neural networks
have attracted recent attention as a method to improve the
fluency of output of MT or speech recognition. In our sys-
tem, we used the recurrent neural network language model
(RNNLM) of [16].2 This model uses a continuous space rep-
resentation over the language model state that is remembered
throughout the entire sentence, and thus has the potential to
ensure the global coherence of the sentence to the greater ex-
tent than simpler n-gram language models.

We incorporate the RNNLM probabilities through
rescoring. For each system, we first output a 10,000-best list,
then calculate the RNNLM log probabilities and add them
as an additional feature to each translation hypothesis. We
then re-run a single MERT optimization to find ideal weights
for this new feature, and then extract the 1-best result from
the 10,000-best list for the test set according to these new
weights. The parameters for RNNLM training are tuned on
the dev set to maximize perplexity, resulting in 300 nodes in
the hidden layer, 300 classes, and 4 steps of back-propagation
through time.

3.4. GMBR System Combination

We used a system combination method based on Generalized
Minimum Bayes Risk optimization [17], which has been suc-
cessfully applied to different types of SMT systems for patent
translation [18]. Note that our system combination only
picks one hypothesis from an N-best list and does not gen-
erate a new hypothesis by mixing partial hypotheses among
the N-best.

3.4.1. Theory

Minimum Bayes Risk (MBR) is a decision rule to choose
hypotheses that minimize the expected loss. In the task of
SMT from a French sentence (f ) to an English sentence (e),
the MBR decision rule on δ(f) → e′ with the loss function L
over the possible space of sentence pairs (p(e, f)) is denoted
as:

argmin
δ(f)

∑

e

L(δ(f)|e)p(e|f) (2)

2http://www.fit.vutbr.cz/˜imikolov/rnnlm/

In practice, we approximate this using N-best list N(f) for
the input f .

argmin
e′∈N(f)

∑

e∈N(f)

L(e′|e)p(e|f) (3)

Although MBR works effectively for re-ranking single
system hypotheses, it is challenging for system combination
because the estimated p(e|f) from different systems cannot
be reliably compared. One practical solution is to use uni-
form p(e|f) but this does not achieve Bayes Risk. GMBR
corrects by parameterizing the loss function as a linear com-
bination of sub-components using parameter θ:

L(e′|e;θ) =
K∑

k=1

θkLk(e
′|e) (4)

For example, suppose the desired loss function is
“1.0−BLEU”. Then the sub-components could be
“1.0−precision(n-gram) (1 ≤ n ≤ 4)” and “brevity
penalty”.

Assuming uniform p(e|f), the MBR decision rule can be
denoted as:

argmin
e′∈N(f)

∑

e∈N(f)

L(e′|e;θ) 1

|N(f)|

= argmin
e′∈N(f)

∑

e∈N(f)

K∑

k=1

θkLk(e
′|e) (5)

To ensure that the uniform hypotheses space gives the
same decision as the original loss in the true space p(e|f),
we use a small development set to tune the parameter θ as
follows. For any two hypotheses e1, e2, and a reference
translation er (possibly not in N(f)) we first compute the
true loss: L(e1|er) and L(e2|er). If L(e1|er) < L(e2|er),
then we would want θ such that:

∑

e∈N(f)

K∑

k=1

θkLk(e1|e) <
∑

e∈N(f)

K∑

k=1

θkLk(e2|e) (6)

so that GMBR would select the hypothesis achieving lower
loss. Conversely if e2 is a better hypothesis, then we want
opposite relation:

∑

e∈N(f)

K∑

k=1

θkLk(e1|e) >
∑

e∈N(f)

K∑

k=1

θkLk(e2|e) (7)

Thus, we directly compute the true loss using a development
set and ensure that our GMBR decision rule minimizes this
loss.

3.4.2. Implementation

We implement GMBR for SMT system combination as fol-
lows.
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First we run SMT decoders to obtain N-best lists for all
sentences in the development set, and extract all pairs of hy-
potheses where a difference exists in the true loss. Then
we optimize θ in a formulation similar to a Ranking SVM
[19]. The pair-wise nature of Eqs. 6 and 7 makes the prob-
lem amendable to solutions in “learning to rank” literature
[20]. We used BLEU as the objective function and the sub-
components of BLEU as features (system identity feature
was not used). There is one regularization hyperparameter
for the Ranking SVM, which we set by cross-validation over
the development set (dev2010).

3.5. What Didn’t Work Immediately

This year we tried to include a state-of-the-art Neural Net-
work Joint Model (NNJM) [21] to improve the accuracy of
translation probability estimation. The model is used to pre-
dict a target language word using its three preceding tar-
get language words and eleven source language words sur-
rounding its affiliation (the non-NULL source language word
aligned to the target language word to be predicted). We
used top 16,000 source and target vocabularies in the model
and mapped the other words into a single OOV symbol,
while the original paper[21] used part-of-speech classes. Al-
though the original paper presented a method for integrating
the model with decoding, we used the NNJM for reranking
n-best hypotheses in a similar manner as the RNNLM de-
scribed above. The NNJM gave some improvements from
the baseline 1-best in our pilot test, but they were much
smaller than those resulting from RNNLM, and when the
NNJM was combined with RNNLM we saw no significant
gains. One possible reason is the small training data size; the
model is very sparse and needs large training data because of
its large contexts of fourteen (eleven source and three target)
words. The affiliation is very important to predict the tar-
get word correctly but it was determined by automatic word
alignment (such as GIZA++) and may not always be good
enough in our experiments.

We also tried post-ordering [22] by shift-reduce reorder-
ing [23] for German-to-English. It was not effective in our
pilot test even in the first-pass lexical translation, probably
due to less effective English-to-German pre-ordering rules.

4. Experiments

We conducted experiments on the English-German and
German-English MT tasks using the SMT systems described
above developed using the supplied datasets.

4.1. Setup

4.1.1. System Overview

We used three individual SMT systems presented in Sec-
tion 2: forest-to-string (F2S), phrase-based with pre-ordering
(Preorder), and phrase-based without pre-ordering (PBMT).

F2S was implemented with Travatar3 [24] and the phrase-
based MT systems were implemented with Moses [25].

For the Travatar rule tables, we used a modified version
of Egret4 as a syntactic parser, and created forests using dy-
namic pruning including all edges that occurred in the 100-
best hypotheses. We trained the parsing model using the
Berkeley parser over the Wall Street Journal section of the
Penn Treebank5 for English, and TIGER corpus [26] for Ger-
man. For model training, the default settings for Travatar
were used, with the exception of changing the number of
composed rules to 6 with Kneser-Ney smoothing. For search
in the F2S models, we used the previously described hyper-
graph search method.

For the Moses phrase tables, we used standard training
settings with Kneser-Ney smoothing of phrase translation
probabilities [27].

4.1.2. Translation Models

We trained the translation models using WIT3 training data
(178,526 sentences) and 1,000,000 sentences selected over
other bitexts (Europarl, News Commentary, and Common
Crawl) by the method described in Section 3.1.

4.1.3. Language Models

We used word 5-gram language models of German
and English that were linearly interpolated from several
word 5-gram language models trained on different data
sources (WIT3, Europarl, News Commentary, and Com-
mon Crawl). The interpolation weights were optimized
to minimize perplexity on the development set, using
interpolate-lm.perl in Moses. Individual language
models were trained by SRILM with modified Kneser-Ney
smoothing.

4.1.4. Truecaser

In order to maintain the casing of words across languages,
we opted to use truecasing (based on the Moses truecaser)
on both the source and target sides. Truecasing keeps the
case of all words that are not sentence initial, and chooses the
case of the sentence initial word based on the most frequent
appearance among different cases in the training data.

4.2. Full System Results

Our full system was a GMBR-based combination of F2S,
Preorder, and PBMT. Tables 1 and 2 show the official evalu-
ation results for English-to-German and German-to-English
tasks, respectively. Among the individual systems, F2S
showed the best BLEU and TER, and Preorder was the worst.
The poor performance of Preorder was not consistent with
our development results on older test sets (discussed later)

3http://www.phontron.com/travatar/
4https://github.com/neubig/egret/
5http://www.cis.upenn.edu/˜treebank/
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Table 1: Official results for English-to-German (case sensi-
tive). ∆BestSingle represents the differences from the results
by the best single system (F2S).

System tst2013 tst2014
(En-De) BLEU TER BLEU TER
Combination .2580 .5386 .2209 .5760
∆BestSingle +.0097 -.0103 -.0021 -.0100
F2S .2483 .5489 .2230 .5860
Preorder .2443 .5567 .2112 .5947
PBMT .2453 .5528 .2150 .5906

Table 2: Official results for German-to-English (case sensi-
tive).

System tst2013 tst2014
(De-En) BLEU TER BLEU TER
Combination .2781 .5162 .2377 .5643
∆BestSingle +.0070 -.0224 +.0030 -.0180
F2S .2711 .5386 .2347 .5823
Preorder .2646 .5425 .2208 .5914
PBMT .2671 .5422 .2229 .5885

Table 3: Percentages of individual system outputs chosen by
system combination.

System En-De De-En
tst2013 tst2014 tst2013 tst2014

F2S 16.11 19.16 57.59 54.24
Preorder 49.14 50.34 39.69 42.72
PBMT 34.74 30.50 1.39 3.04

and our last year’s results with hand-crafted rules [1]. The
GMBR combination further improved BLEU and TER com-
pared to those of F2S, except for BLEU in tst2014. The
improvement in TER was large, about 1% in English-to-
German and 2% in German-to-English, compared to an at
most 1% gain in BLEU.

Table 3 shows the contributions of individual systems in
the system combination, by percentages of chosen system
outputs. As we discussed in our system description paper
last year [1], the GMBR system combination works as voting
over n-best hypotheses from different systems. The results
in Table 3 indicate the best F2S system contributed little in
English-German and the worst Preorder system contributed
about a half of the system combination outputs. There were
large difference between these results and our last year’s re-
sults, but we do not yet have a solid answer for the reason.
One possibility is the inconsistency between the training con-
dition (Preorder worked well) and the test condition (Pre-
order worked poorly) as discussed later in detail.

Table 4: Results on old IWSLT test sets for English-to-
German (case sensitive). Scores in bold indicate the best
individual system results.

System tst2010 tst2011 tst2012
(En-De) BLEU TER BLEU TER BLEU TER
Combi. .2516 .6309 .2714 .5870 .2388 .6380
F2S .2487 .6452 .2670 .5989 .2306 .6545
Preorder .2412 .6523 .2639 .6043 .2274 .6601
PBMT .2419 .6509 .2634 .6031 .2280 .6575

Table 5: Results on old IWSLT test sets for German-to-
English (case sensitive). Scores in bold indicate the best in-
dividual system results.

System tst2010 tst2011 tst2012
(De-En) BLEU TER BLEU TER BLEU TER
Combi. .3155 .5583 .3711 .4949 .3144 .5515
F2S .3037 .5901 .3465 .5313 .3028 .5812
Preorder .3065 .5730 .3604 .5088 .3055 .5647
PBMT .3043 .5754 .3571 .5119 .3038 .5678

4.3. Detailed Results and Discussions

4.3.1. Evaluation on Old Test Sets

Tables 4 and 5 shows the results on old IWSLT test sets
(tst2010, tst2011, tst2012). The results tend to show a dif-
ferent trend than those for tst2013 and tst2014; Specifically
looking at the German-to-English task, F2S was the worst
and Preorder worked the best on these older data sets, as
shown in Table 5.

One possible reason for this difference is the difference
in the original languages in the older and newer test sets.
The official test sets this year (tst2013, tst2014) came from
TEDX talks in German, and thus the source German sen-
tences were transcriptions. In contrast, the older test sets
(tst2010, tst2011, tst2012) came from TED talks in English,
and thus the source German sentences were translations from
English. It has been widely noted that translations differ sig-
nificantly from original texts stylistically (e.g. [28]), and the
difference may cause some inconsistencies in syntactic pars-
ing and syntax-based translation. Preorder used only domi-
nant reordering patterns in German extracted from translated
German sentences, which were consistent with the TED test
sets but not with the TEDX test sets.

4.3.2. Effect of Search on F2S Translation

As mentioned in Section 2.1, we tested two algorithms
for search in F2S models, cube pruning, and hypergraph
search. In Figure 1 we show the speed and accuracy for
both algorithms at various beam sizes for English-German
and German-English translation. All results are reported on
tst2010, but similar results were found for other sets.

From these results, we can see that given an identical de-
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Figure 1: Hypergraph search (HS) and cube pruning (CP)
results for F2S translation. Numbers above and below the
lines indicate time in seconds/sentence for HS and CP re-
spectively.

coding time, hypergraph search outperforms cube pruning on
both language pairs at all beam sizes, especially for smaller
beams. This effect was particularly notable for German-
English translation. Even when the beam is reduced from
5000 (which was used in our actual submission) to 10, we
only see a drop in one BLEU point, but reduce the time
required for decoding to 200ms, much of which can be at-
tributed to processing other than search such as rule lookup
or file input/output. This is in contrast to cube pruning, which
sees a 5.5 BLEU point drop at the same beam size.

5. Conclusion

In this paper, we presented our English-to-German and
German-to-English SMT systems using combination of
forest-based, pre-ordering, and standard phrase-based MT
systems. The forest-based system employed the hypergraph
search for efficient translation, and the pre-ordering used
automatically-induced rules from the bilingual corpus. The
individual systems used training data selection, compound
word splitting for German, and RNNLM rescoring, same as
our last year’s systems. Our results show the forest-to-string
SMT was consistently the most effective of the three and can
be further improved by GMBR system combination with the
results from the other two systems. The pre-ordering was not
effective in the 2013 and 2014 test sets in contrast to the older
ones.
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