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Abstract—This paper proposes a modified post-filter to recover
a Modulation Spectrum (MS) in HMM-based speech synthesis.
To alleviate the over-smoothing effect which is one of the major
problems in HMM-based speech synthesis, the MS-based post-
filter has been proposed. It recovers the utterance-level MS
of the generated speech trajectory, and we have reported its
benefit to the quality improvement. However, this post-filter is
not applicable to various lengths of speech parameter trajectories,
such as phrases or segments, which are shorter than an utterance.
To address this problem, we propose two modified post-filters,
(1) the time-invariant filter with a simplified conversion form and
(2) the segment-level post-filter which applicable to a short-term
parameter sequence. Furthermore, we also propose (3) the post-
filter to recover the phoneme-level MS of HMM-state duration.
Experimental results show that the modified post-filters also yield
significant quality improvements in synthetic speech as yielded
by the conventional post-filter.

Index Terms—HMM-based speech synthesis, modulation spec-
trum, post-filter, over-smoothing

I. INTRODUCTION

Parametric speech synthesis based on Hidden Markov Mod-
els (HMMs) [1] is an effective framework for generating
diverse synthetic speech. In HMM-based speech synthesis,
speech parameters, i.e., spectral and excitation features and
HMM-state duration are simultaneously modeled with context-
dependent HMMs in a unified framework. This approach
allows us not only to produce smooth speech parameter
trajectories under a small footprint [2] but also to apply several
techniques for flexibly controlling them [3], [4], [5] to various
speech-based systems [6], [7].

One of the critical problems of HMM-based speech synthe-
sis is that the trajectories generated from the trained HMMs are
often over-smoothed. This phenomenon causes the degradation
of perceptual quality, and synthetic speech sounds muffled
[8]. One approach to addressing this problem is to combine
a unit selection framework [9], [10], and the other approach
is to enhance specific features not well reproduced from the
traditional HMMs due to the over-smoothing effect [11], [12].
The latter approach can achieve the production of high-quality
speech while preserving its small footprint. As one of the
methods based on the latter approach, we have proposed the
Modulation Spectrum (MS)-based post-filter [13]. The MS is
known as a perceptual cues [14], [15], and the proposed post-
filter can improve the quality by recovering the utterance-
level MS of the generated speech parameters. However the
post-filtering process needs to calculate the MS of the fixed

978-1-4799-7088-9/14/$31.00 ©2014 |[EEE

length of speech parameter trajectories, and therefore, it is not
applicable to various lengths of speech parameter trajectories,
such as phrases or segments. This constraint causes some
limitations; e.g., it prevents a recursive speech parameter gen-
eration algorithm [16] from being used for low-delay speech
waveform generation.

In this paper, we propose two modified post-filters capable
of being widely used by relaxing the constraint: (1) the time-
invariant filter and (2) the segment-level post-filter. The time-
invariant filter makes the filtering process independent of the
length of the generated trajectories. The segment-level filter
achieves a segment-by-segment filtering process to recover
the MS of a shorter length of speech parameter trajectories
compared to the conventional utterance-level filter. Further-
more, to further improve naturalness of synthetic speech, (3)
we propose the post-filter for HMM-state duration to recover
the MS of a phone-level duration sequence in a similar manner
to in the conventional post-filter. We evaluate performance of
the individual proposed methods separately to investigate the
effect of them on naturalness of synthetic speech.

II. PARAMETER GENERATION
In synthesis, HMMs corresponding to input text are con-
structed from context-dependent HMMs build using natural
speech parameters in training. . After determining the HMM-
state sequence ¢ = [q1, - ,qr] to maximize the duration
likelihood, the parameter trajectory is generated to maximize
HMM likelihood under a constraint on the relationship be-

tween static and dynamic features as follows:

é=argmax P (We|g,A), (D
c
where ¢ = [ef, - ,CHT is a speech parameter vector

sequence of T frames, ¢; = [c; (1), , ¢ (d), -+ , ¢ (D))"
is a D-dimensional parameter vector at frame t, d is a
dimensional index, W is the weighting matrix for calculating
the dynamic features [17], ¢; is a HMM-state index at frame
t, and X is a HMM parameter set. To alleviate the over-
smoothness of the generated parameters, Global Variance (GV)
[11] can be also considered in parameter generation.

IIT. CONVENTIONAL MS-BASED POST-FILTER [13]
A. MS-based Post-Filtering Process

The MS s (c) is defined as a log-scaled power spectrum of
the temporal sequence ¢, which is calculated as
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s@ = [s7 5@ )] @

s(@d) = [sa(0), - sa(f), - ysa(F)T, Q)
where sq (f) is the f-th MS of the d-th dimension of the
parameter sequence [c1 (d),--- ,cr (d)], f is a modulation
frequency index, F is a half number of the DFT length.

In synthesis, the speech parameter sequence generated from
the HMM is transformed to the modulation frequency domain.
Then, its MS is converted as follows:

sa(f) = (1=K)sa(f)
UglN) G N
+ k| (sa (- i) + 0l @
04
where ug)f and og) are mean and standard deviation of sq (f),

N and G indicate of MS of the natural parameter and the
generated speech parameter sequence, respectively. The MS
statistics are estimated in advance from natural and generated
speech parameter sequences for training data. The coefficient
k is a parameter to control the degree of emphasis, which
is determined manually. Finally, the filtered speech parameter
sequence is generated from the converted MS and its original
phase.

B. Problems

In [13], the MS is calculated utterance by utterance, The
DFT length for the MS calculation needs to be set large enough
to cover various lengths of utterances. This MS calculation
causes some problems: if the length of an utterance to be
synthesized is longer than the previously determined DFT
length, the MS can not be calculated accurately; the utterance-
level filtering process is hard to be applied to a low-latency
speech synthesis frame work [18] where a frame-level or
segment-level processing based on the recursive parameter
generation [16] is essential.

Moreover, it has been reported that post-processing to
enhance speech parameters, such as the GV-based parameter
generation, is also effective for not only spectral and Fj
parameters but also HMM-state duration [19]. Although we
have applied the MS-based post-filter to only spectrum and
Iy, it is worthwhile to also apply the MS-based post-filter to
the HMM-state duration and investigate its effectiveness.

IV. PROPOSED MODIFICATION METHODS FOR MS-BASED
PoOST-FILTER

To address the problems in the conventional MS-based post-
filter, we propose two modification methods for the MS-based
post-filter. Moreover, we also propose the MS-based post-filter
for the HMM-state duration.

A. Method 1: Time-Invariant Post-Filter

A time-invariant post-filter is derived by assuming that agﬁf)
(©)

is equal to o, in Eq. (4) as follows:

$alf) = (1=R)salf)+k [sa ()=l +nY

= sa(h)+k [uly = ] (5)

Because the second term in R.H.S. is independent of s, (f),
this conversion process can be represented as a filtering
process for the generated speech parameter sequence with a
time-invariant FIR filter.

B. Method 2: Segment-Level Post-Filter

A segment-level post-filter is derived by localizing the post-
filtering process as illustrated in the left-hand side of Figure
1. A part of the speech parameter sequence that is windowed
by a triangular window with constant length is used as a
segment to calculate the MS and its statistics. The window
shift length is set to a half of the window length. The MS-
based post-filtering process is performed segment by segment
in the same manner as the conventional filtering. The filtered
speech parameter sequence is generated by overlapping and
adding the filtered segments. The hanning window may also
be used instead of the triangular window. Note that for the
spectrum parameter, silence frames are removed in calculating
the MS statistics to alleviate the over-fitting problem [20]. For
Fy, continuous Fjy pattern [21] is used [13]. The segment-level
post-filtering can be applicable to the low-delay speech wave-
form generation. Moreover, it is possible to further implement
context-dependent post-filtering.

C. Method 3: MS-Based Post-Filter for Duration

Although the state duration is not an actual parameter
trajectory, it is affected by the over-smoothing effect due to a
statistical averaging process as in spectrum and Fjy parameters
[22]. As illustrated in Figure 2, we can interestingly find the
MS degradation of the modulation frequency' of phoneme-
level duration sequences. Therefore, it is expected that quality
improvements in synthetic speech are yielded by recovering
their MS.

The overview of the proposed method is illustrated in
the right side of Figure 1. First, phoneme-level duration is
calculated from the determined state-level duration. Then, a
phoneme-level duration sequence over an utterance is con-
structed by excluding the silence parts and its mean value is
normalized as in Fy parameters [13]. The resulting sequence
is used to calculate the MS and is also filtered in the same
manner as the conventional post-filtering. After restoring the
utterance-level mean, the phoneme-level duration is revised if
it is smaller than the number of states of the phoneme HMM.
Finally, the HMM-state duration is updated by maximizing the
state duration while fixing the phoneme duration to the filtered
values.

V. EXPERIMENTAL EVALUATIONS

A. Experimental Conditions

We trained a context-dependent phoneme Hidden Semi-
Markov Model (HSMM) [23] for a Japanese female speaker.

'Nyquist frequency is set to 1.0.
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Fig. 1. An overview of the proposed methods (left: the segment-level post-
filter, right: the post-filter for duration).

We used 450 sentences for training and 53 sentences for
evaluation from phonetically balanced 503 sentences included
in the ATR Japanese speech database [24]. Speech signals
were sampled at 16 kHz. The shift length was set to 5 ms.
The Oth-through-24th mel-cepstral coefficients were extracted
as a spectral parameter and log-scaled Fy and 5 band-
aperiodicity [25], [26] were extracted as excitation parameters.
The STRAIGHT analysis-synthesis system [27] was employed
for parameter extraction and waveform generation. The feature
vector consisted of spectral and excitation parameters and their
delta and delta-delta features. Five-state left-to-right HSMMs
were used.

B. Evaluation 1: Time-Invariant Post-Filter

To confirm the effect by the time-invariant filter, we con-
ducted the subjective evaluation to compare the following
speech samples:

HMM: original parameter by Eq. (1)

HMM+MS (ti): parameters filtered by the time-invariant

filter

HMM+MS: parameters filtered by the conventional filter

From [13], the emphasis coefficient and DFT length were set to
0.85 and 4096, respectively. We applied the MS-based post-
filter to both spectrum and Fy. We conducted a preference
test (AB test) on speech quality. Every pair of three types of
synthetic speech was presented to listeners in random order. 6
listeners were asked which sample sounds better in terms of
speech quality.

The preference result is shown in Figure 3. We can see that
a significant quality improvement is yielded by applying the
time-invariant post-filter to the generated speech parameters.
Although the improved quality is not comparable to that
yielded by the conventional post-filter, the time-invariant post-
filter is applicable to various lengths of speech parameter
sequences.

C. Evaluation 2: Segment-Level Post-Filter

The window length and window shift length were set to
125 ms (25 samples) [28] and 60 ms (12 samples), respec-
tively. 64-taps FFT was used. We compared the following
speech samples:

HMM: original parameter generated by Eq. (1)
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HMM+LMS: “HMM” parameters filtered by the segment-
level filter

HMM+GYV: parameters generated by Eq. (1) with the GV

HMM+GV+LMS: “HMM+GV” parameters filtered by the
segment-level filter

1) Tuning Emphasis Coefficient: We calculated the HMM
likelihood, GV likelihood, and MS likelihood for the filtered
both spectral parameters and F contours while varying the
emphasis coefficient from 0 to 1. For comparison, the likeli-
hood for natural speech parameters was calculated, which is
labeled as “Natural.”

The results are shown in Figs. 4 to 9. Their tendencies
are similar to those of the conventional post-filter as reported
in [13]. The degradation of HMM likelihoods by the post-
filtering process, but they are sill greater than that of natural
parameters. Almost likelihoods tend to increase as the filter
coefficient is close to 1. we observed the degradation of the
MS likelihood for F{, but it is always greater than that of
natural parameters. From these results, we tuned the emphasis
coefficient to 1.0 for both spectrum and Fj.

2) Subjective Assessment on Speech Quality: AB test using
the above 4 methods on speech quality by 7 listeners was
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conducted in the same manner as in the previous section. The
post-filtering was applied to both spectrum and Fyj.

The preference score is shown in Figure 10. It is observed
that the significant quality gain is yielded by “HMM+LMS”
compared to “HMM,” and its comparable to that yielded by
“HMM+GV.” Furthermore, we can see that the additional gain
is yielded by “HMM+GV+LMS” compared to “HMM+GV.”
This tendency is similar to that observed in the conventional
post-filter as reported in [13]. Please note that the segment-
level post-filter is applicable to various lengths of a speech
parameter sequence but the conventional one cannot.

D. Evaluation 3: MS-Based Post-Filtering for Duration

We evaluated the effectiveness of the post-filter for duration.
64-taps FFT was used. The spectrum and Fjp is not filtered.
Compared speech samples are below:

DUR: original duration

DUR+MS: duration filtered by the proposed the post-filter
The duration likelihood and MS likelihood are shown in Figure
12 and Figure 13, respectively. We can see that the MS
likelihood increases as the filter coefficient is close to 1 while
preserving the duration likelihood high enough. Therefore, the
emphasis coefficient was set to 1.0 in the subjective evaluation.
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We can also see discontinuous transition of the MS likelihood.
We expect that this was caused by the effect of rounding the
filtered duration values into integer values after filtering.

The result of AB test by 6 listeners is shown in Figure 11.
We can see that te MS-based post-filter for duration tends to
slightly improve speech quality.

VI. SUMMARY

This paper have proposed the modified Modulation Spec-
trum (MS)-based post-filters in HMM-based speech synthesis.
We have reported that the post-filters can avoid the conven-
tional limitation while preserving the quality gain. Further-
more, we have applied the MS-based post-filter to phone-level
duration, and have yielded the effectiveness on speech quality.
We will investigate the benefits of the post-filter and MS itself
on various situation.
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