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Abstract
An electrolarynx is a device that artificially generates exci-

tation sounds to enable laryngectomees to produce electrolaryn-
geal (EL) speech. Although proficient laryngectomees can pro-
duce quite intelligible EL speech, it sounds very unnatural due
to the mechanical excitation produced by the device. To address
this issue, we have proposed several EL speech enhancement
methods using statistical voice conversion and showed that sta-
tistical prediction of excitation parameters, such as F0 patterns,
was essential to significantly improve naturalness of EL speech.
In these methods, the original EL speech is recorded with a mi-
crophone and the enhanced EL speech is presented from a loud-
speaker in real time. This framework is effective for telecom-
munication but it is not suitable to face-to-face conversation be-
cause both the original EL speech and the enhanced EL speech
are presented to listeners. In this paper, we propose direct F0

control of the electrolarynx based on statistical excitation pre-
diction to develop an EL speech enhancement technique also
effective for face-to-face conversation. F0 patterns of excita-
tion signals produced by the electrolarynx are predicted in real
time from the EL speech produced by the laryngectomee’s ar-
ticulation of the excitation signals with previously predicted F0

values. A simulation experiment is conducted to evaluate the
effectiveness of the proposed method. The experimental re-
sults demonstrate that the proposed method yields significant
improvements in naturalness of EL speech while keeping its in-
telligibility high enough.

Index Terms: laryngectomee, electrolarynx, electrolaryngeal
speech, statistical excitation prediction, simulation evaluation

1. Introduction
Speech is one of the most common media of human commu-
nication. Unfortunately, there are many people with disabil-
ities that prevent them from producing speech freely, leading
to communication barriers. One example of people who can-
not produce speech freely are laryngectomees, who have under-
gone an operation to remove the larynx including the vocal folds
for reasons such as an accident or laryngeal cancer. Laryngec-
tomees cannot produce speech in the usual manner because they
no longer have their vocal folds.

Electrolaryngeal (EL) speech is produced by one of the
major alternative speaking methods for laryngectomees. As
shown in Figure 1, EL speech is produced using an electro-
larynx, which is an electromechanical vibrator that is typically
held against the neck to mechanically generate artificial excita-
tion signals. The generated excitation signals are conducted into
the speaker’s oral cavity, and EL speech is produced by articu-
lating the conducted excitation signals. Compared with other
types of alaryngeal speech, EL speech is relatively intelligible.
However, the excitation sounds are usually emitted outside as
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Figure 1: Speech production mechanisms of non-disabled peo-

ple (left figure) and total laryngectomees (right figure).

noise causing degradation of sound quality. Naturalness is also
very low owing to the mechanical sound quality and artificial
fundamental frequency (F0) patterns caused by the mechani-
cally generated excitation signals. In particular, the latter issue
is an essential drawback of EL speech caused by the difficulty
of artificially generating natural F0 patterns corresponding to
linguistic content.

To address these issues of EL speech, several EL speech
enhancement methods have been proposed. These methods in-
clude enhancement methods based on a simple signal process-
ing framework, e.g., noise reduction to alleviate the issues of
the leaked excitation [1] and rule-based formant manipulation
in analysis-synthesis [2]. Recently, statistical approaches to EL
speech enhancement have been proposed [3] to convert alaryn-
geal speech into target normal speech while keeping linguis-
tic information unchanged. We recently proposed a hybrid ap-
proach [4] using noise reduction [1] [5] for enhancing spectral
parameters and statistical voice conversion [6] [7] for predicting
excitation parameters. Our experimental results demonstrated
that the hybrid approach achieved significant improvements of
naturalness while causing no degradation in intelligibility com-
pared to the original EL speech. We have also found that the
use of F0 patterns statistically predicted from EL speech is very
effective for improving naturalness of EL speech.

Traditional EL speech enhancement systems need to record
the original EL speech with a microphone and present the en-
hanced EL speech with a loudspeaker. This enhancement pro-
cess can be achieved in real time, and therefore it is very effec-
tive for facilitating human-to-human conversation. However,
there is an essential drawback: both the original EL speech
and the enhanced EL speech can be heard in the vicinity of the
speaker. If these systems are used for telecommunication, no
problem is caused because it is possible to present only the en-
hanced speech to the listener. On the other hand, this technology
is not suitable for face-to-face conversation because the original
EL speech is always heard by the listener.

In this paper, we propose an EL speech enhancement sys-
tem effective for any situation, including face-to-face conver-
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sation. F0 patterns of the excitation signals produced by the
electrolarynx are directly controlled using statistical excitation
prediction. Namely, an F0 value at a current frame is predicted
in real time from the EL speech produced by the laryngectomee
articulating the excitation signals with previously predicted F0

values. Consequently, the proposed system has the potential to
allow laryngectomees to directly produce enhanced EL speech
with more natural F0 patterns than the original EL speech, and
present only the enhanced EL speech to the listener. As the
first step toward implementation of the proposed system, a sim-
ulation experiment is conducted in this paper to demonstrate
that the proposed system is capable of achieving significant im-
provements in naturalness of EL speech while preserving its
high intelligibility.

2. Statistical Excitation Prediction
The proposed method uses a statistical voice conversion tech-
niques [8] [9] to predict F0 patterns of normal speech produced
by a non-disabled person from spectral parameters of EL speech
produced by a laryngectomee. It consists of training and pre-
diction processes as shown in Figure 2. A conversion model
to predict F0 patterns is trained in advance using a parallel
data set consisting of utterance pairs of EL speech by a laryn-
gectomee and normal speech by a target non-disabled speaker.
The prediction process is based on maximum likelihood esti-
mation of speech parameter trajectories considering global vari-
ance (GV) [9].

2.1. Training Process
In the training process, first source and target features are ex-
tracted from the parallel data. As the source features, spectral
segment features of EL speech are extracted from mel-cepstra at
multiple frames around the current frame [10]. As the target fea-
tures, F0 values are extracted from natural speech. Continuous
F0 patterns [11] are generated from the originally extracted F0

values by spline interpolation to produce F0 values at unvoiced
frames, and low-pass filtering is used to remove micro-prosody.
The effectiveness of using continuous F0 patterns in statistical
excitation prediction was reported in [12].

We assume the spectral segment features of EL speech Xt

and a log-scaled F0 value yt of normal speech at frame t. As
an output feature vector, we use Y t = [yt,Δyt] consisting of
the static and dynamic features. We train a Gaussian mixture
model (GMM) to model the joint probability density [13] of the
source and target features using the corresponding joint feature
vector set generated by performing automatic frame alignment
for the parallel data set, which is given by:

P (Xt,Y t|λ)
=

∑M
m=1 αmN

(
[X�

t ,Y
�
t ]

�;μ(X,Y )
m ,Σ

(X,Y )
m

)
(1)

μ(X,Y )
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[
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m

μ(Y )
m

]
, Σ

(X,Y )
m =

[
Σ

(XX)
m Σ

(XY )
m

Σ
(Y X)
m Σ

(Y Y )
m

]
(2)

where � denotes transposition. N (·;μ,Σ) denotes a Gaussian
distribution with a mean vector μ and a covariance matrix Σ.
The mixture component index is m. The total number of mix-
ture components is M . The parameter set of the GMM is λ,
which consists of mixture-component weights αm, mean vec-

tors μ(X,Y )
m and full covariance matrices Σ

(X,Y )
m for individual

mixture components. The mean vector μ(X,Y )
m consists of a

source mean vector μ(X)
m and a target mean vector μ(Y )

m . The
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Figure 2: The training and prediction process.

covariance matrix Σ
(X,Y )
m consists of source and target covari-

ance matrices Σ
(XX)
m and Σ

(Y Y )
m and cross-covariance matri-

ces Σ
(XY )
m and Σ

(Y X)
m . We also train a Gaussian distribution

modeling the probability density of the GV for F0 patterns of
the target normal speech [9].

2.2. Prediction Process
The continuous F0 patterns of the target normal speech are pre-
dicted from the spectral segment features of EL speech using
the trained GMM as follows:

ŷ = argmax
y

P (Y |X,λ)P (v(y)|λ(v))ω

subject toY = Wy (3)

where X = [X�
1 , · · · ,X�

t , · · · ,X�
T ]

�, Y =
[Y �

1 , · · · ,Y �
t , · · · , Y �

T ]
�, and ŷ = [ŷ1, · · · , ŷt, · · · , ŷT ]�

are time sequence vectors of the spectral segment features, the
joint static and dynamic target F0 features, and the predicted
F0 features over an utterance, respectively. The matrix W is
a transform to extend the static feature vector sequence into
the joint static and dynamic feature vector sequence [14]. The
GV probability density is given by P (v(y)|λ(v)), where v(y)
is the GV of the target static feature vector sequence y and
λ(v) is a parameter set of the Gaussian distribution for the
GV. The GV likelihood weight is given by ω. Finally, silence
frames are automatically detected using waveform power and
unvoiced excitation signals are generated only at those frames.
Note that a real time prediction process can be achieved by
using a computationally efficient real-time voice conversion
method [15] based on the low-delay conversion algorithm to
approximately solve Eq. (3) [16].

3. Statistical Method for Directly
Controlling F0 Patterns of Electrolarynx

3.1. Proposed System
The process of our proposed system is shown in Figure 3. This
system allows laryngectomees to directly produce enhanced EL
speech, and consists of two main processes: an articulation pro-
cess and a prediction process. In the articulation process, the
excitation signals generated from the electrolarynx are articu-
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lated by laryngectomees in the same manner as the traditional
speaking method using the electrolarynx. In the prediction pro-
cess, F0 patterns of the excitation signals are predicted from EL
speech based on the real time statistical excitation prediction.

In this process, there are two main problems. One is
misalignment between the articulated sounds and F0 patterns.
Real-time statistical excitation prediction causes a constant pro-
cessing delay of 50 to 70 msec as reported in [15]. Namely,
predicted F0 values from instances 70 msec before are used to
generate the excitation signals at the next frame. Consequently,
the EL speech produced by the proposed system always suffers
from misalignment between the articulated sounds and F0 pat-
terns caused by this delay. It is necessary to investigate whether
or not this misalignment causes perceivable degradation in the
EL speech.

The other problem is acoustic mismatches between the
training and prediction processes. The EL speech produced
by using the proposed system is affected by the predicted F0

values. Therefore, spectral parameters extracted from it are
also affected by them. This has the potential to cause acoustic
mismatches between the training and prediction processes. In
statistical excitation prediction, spectral analysis based on fast
Fourier transform (FFT) is usually used to significantly reduce
computational cost. Because the FFT-based spectral analysis
easily captures periodicity of the excitation signals, the source
features (i.e., the mel-cepstral segment features) are strongly af-
fected by the predicted F0 values. To address this issue, we
investigate two approaches, a model-based approach and a fea-
ture extraction approach. The former approach uses the con-
version model widely accepting EL speech with various F0 val-
ues. For the original EL speech samples in the parallel data
set, analysis-resynthesized EL speech samples are generated by
modifying the F0 values. FFT spectral features are extracted
from these generated samples and the resulting source features
are used in the GMM training. In this paper, global linear trans-
formation is used for modifying the F0. On the other hand, the
latter approach uses a spectral analysis method robust to peri-
odicity of the excitation signals. STRAIGHT analysis [17] is
used in this paper. To significantly reduce computational cost
of STRAIGHT analysis, the predicted F0 value is directly used
in spectral analysis to avoid the F0 extraction process.

3.2. A Simulation Experient
As the first step for implementation of the proposed system, we
investigate the performance of the proposed system by a simula-
tion experiment in this paper. The simulated implementation of
the proposed system is also shown in Figure 3. In the prediction
process, not the low-delay conversion algorithm but the batch
conversion algorithm is employed. The conversion accuracy of
the two algorithms is almost equivalent.

At first, 1) we extract spectral envelope parameters and ape-
riodic components [18] from the original EL speech in advance
by using STRAIGHT analysis. These features capture acous-
tic properties depending on articulation and the excitation sig-
nals leaked out from the electrolarynx, except for periodicity
of the excitation signals. These are used to approximate the
EL speech production process. Then, 2) spectral segment fea-
tures are extracted from EL speech, and F0 patterns of normal
speech are predicted from them based on the statistical exci-
tation prediction. 3) The predicted F0 patterns are delayed to
consider the delay time caused by real time prediction process.
4) Using the delayed F0 patterns and the extracted aperiodic
components, excitation signals are generated using the mixed

Real-time
prediction
with GMM
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Articulation

F0 prediction

Electrolaryngeal speech

Feature 
extraction

Delayed F0

Prediction with
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Figure 3: The proposed system and its simulation implementa-

tion.

excitation model [19]. 5) Finally, the enhanced EL speech is
approximately synthesized by filtering the generated excitation
signals with the extracted spectral envelope parameters. Note
that this is a result of using the spectral segment features ex-
tracted from the original EL speech, and therefore it is not af-
fected by the predicted F0 patterns. To consider the impact of
the predicted F0 patterns on the spectral segment features, 6)
the spectral segment features are extracted again from the syn-
thesized EL speech and F0 pattern prediction is also performed
again using the extracted spectral segment features. Step 3) to
step 6) are iteratively repeated until the predicted F0 patterns
converge. If they converge, the proposed system may be ex-
pected to work stably because the EL speech produced with the
predicted F0 patterns is consistent with that used in the spec-
tral segment feature extraction. We experimentally investigate
whether or not the predicted F0 patterns converge.

4. Experimental Evaluation
4.1. Experimental Conditions
We conducted an objective test for evaluating prediction accu-
racy of F0 patterns and two subjective evaluations on intelli-
gibility and naturalness. The source speaker was one laryn-
gectomee and the target speaker was one non-disabled speaker.
Both speakers recorded 50 phoneme-balanced sentences. Sam-
pling frequency was set to 16 kHz.

We employed FFT analysis or STRAIGHT analysis to ex-
tract the spectrum parameters of EL speech. Note that F0 val-
ues of EL speech in STRAIGHT analysis were constantly set
to 100 Hz instead of performing STRAIGHT F0 analysis be-
cause F0 of the excitation signals was almost equivalent to 100
Hz in the electrolarynx used by the laryngectomee. The frame
shift length was set to 5 msec. The extracted spectral param-
eters were converted to the 0th through 24th mel-cepstral co-
efficients, which were used to extract the mel-cepstral segment
feature as the source feature. The mel-cepstra at current ± 4
frames were used in this segment feature extraction. F0 values
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Figure 4: Prediction accuracy for F0 correlation coefficient.

of normal speech were extracted with STRAIGHT F0 analysis
and continuous F0 patterns were generated using a low-pass fil-
ter with 10 Hz cut-off frequency as the target feature. The mean
F0 value of normal speech was around 220 Hz.

We conducted a 5-fold cross validation test in which 40 ut-
terance pairs were used for training, and the remaining 10 ut-
terance pairs were used for evaluation. The number of mixture
components was set to 32. In the training data generation pro-
cess described in Section 3.1, F0 values were shifted to 150,
200, and 250 Hz, and totally 160 EL speech samples were used
to train the GMM. The delay time in the simulation experiment
was set to 70 msec.

The EL speech generated by the following four systems
were mainly evaluated:

EL Original EL speech
BASELINE Enhanced speech that does not perform real-time

F0 predictioin, and that has no processing delay causing
the F0 misalignment. This is equivalent to the conven-
tional hybrid EL speech enhancement method [4] with-
out the noise reduction process.

MIX Enhanced speech with the processing delay using the
GMM trained with the training data generation process.

STRAIGHT Enhanced speech with the processing delay us-
ing robust spectral analysis with STRAIGHT using the
predicted F0.

In the objective evaluation, the correlation coefficient be-
tween the predicted and natural F0 patterns was calculated. To
clarify the impact of the acoustic mismatches caused by the
predicted F0 on the F0 estimation accuracy, we also evalu-
ated a system “NORMAL” with the processing delay using the
GMM without the training data generation process nor the ro-
bust spectral analysis. Moreover, the F0 estimation accuracy
not suffering from the acoustic mismatches was also evalu-
ated in the systems, “MIX”, “STRAIGHT”, and “NORMAL”
by shifting the predicted F0 values so that their mean value
was equal to that of the original EL speech used in the train-
ing (i.e., 100 Hz), which were denoted as “MIX+matched”,
“STRAIGHT+matched”, and “NORMAL+matched.”

In the subjective evaluation, we conducted two opinion tests
on intelligibility and naturalness. The opinion score was set to
a 5-point scale (i.e., 1 (very poor) to 5 (excellent)). The number
of listeners was 5 in each test. Each listener evaluated natu-
ralness and intelligibility of “EL”, “BASELINE”, “MIX”, and
“STRAIGHT.”

4.2. Experimental Results
Figure 4 shows the result of the objective evaluation. We can
see that correlation coefficients of all systems converge and the
simulation process works reasonably well. If the acoustic mis-
matches are not caused by the predicted F0, i.e., in the systems
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Figure 5: Result of opinion test on intelligibility.
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Figure 6: Result of opinion test on naturalness.

“+matched”, the correlation coefficient is constant over the it-
erative process in the simulation. On the other hand, it can be
observed from “NORMAL” that the correlation coefficient sig-
nificantly degrades in the mismatched situations. This degrada-
tion is effectively alleviated by using the training data genera-
tion “MIX” or the robust spectral analysis “STRAIGHT.”

Figure 5 shows the result of the opinion test on intelligibil-
ity. “BASELINE” causes no degradation in intelligibility com-
pared to the original EL speech as reported in [4]. In the pro-
posed systems, “STRAIGHT” can also preserve high intelligi-
bility of the original EL speech but “MIX” causes slight degra-
dation in intelligibility. We found that F0 patterns generated in
“MIX” sometimes varied unstably. Although we need to more
carefully analyze these results, it is possible that the number of
mixture components in “MIX” needs to be increased to accept
more varieties of the mel-cepstral segment features.

Figure 6 shows the result of the opinion test on naturalness.
The original EL speech is very unnatural but its naturalness can
be significantly improved by “BASELINE” as reported in [4].
The proposed systems “MIX” and “STRAIGHT” can also sig-
nificantly improve the naturalness. Because no statistically sig-
nificant difference can be observed between “BASELINE” and
the proposed systems “MIX” and “STRAIGHT”, it is revealed
that misalignment of F0 patterns does not cause any degradation
in naturalness.

5. Conclusions
In this paper, we proposed an electrolaryngeal (EL) speech en-
hancement system that directly controls F0 values of the exci-
tation signals generated by an electrolarynx based on statistical
excitation prediction. We conducted simulation experiments to
evaluate the effectiveness of the proposed system, investigating
whether or not the enhanced EL speech is significantly affected
by the processing delay of F0 prediction and acoustic mis-
matches caused by the dynamically predicted F0 values, which
are always observed in the proposed system. The experimental
results have shown that they cause no significant differences in
either naturalness or intelligibility and the proposed system can
significantly improve naturalness of EL speech while preserv-
ing its high intelligibility.
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