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Abstract
This paper presents a novel statistical singing voice conver-
sion (SVC) technique with direct waveform modification based
on the spectrum differential that can convert voice timbre of a
source singer into that of a target singer without using a vocoder
to generate converted singing voice waveforms. SVC makes it
possible to convert singing voice characteristics of an arbitrary
source singer into those of an arbitrary target singer. However,
speech quality of the converted singing voice is significantly de-
graded compared to that of a natural singing voice due to vari-
ous factors, such as analysis and modeling errors in the vocoder-
based framework. To alleviate this degradation, we propose a
statistical conversion process that directly modifies the signal in
the waveform domain by estimating the difference in the spec-
tra of the source and target singers’ singing voices. The dif-
ferential spectral feature is directly estimated using a differen-
tial Gaussian mixture model (GMM) that is analytically derived
from the traditional GMM used as a conversion model in the
conventional SVC. The experimental results demonstrate that
the proposed method makes it possible to significantly improve
speech quality in the converted singing voice while preserving
the conversion accuracy of singer identity compared to the con-
ventional SVC.
Index Terms: singing voice, statistical voice conversion,
vocoder, Gaussian mixture model, differential spectral compen-
sation

1. Introduction
The singing voice is one of the most expressive components in
music. In addition to pitch, dynamics, and rhythm, the linguistic
information of the lyrics can be used by singers to express more
varieties of expression than other music instruments. Although
singers can also expressively control their voice timbre to some
degree, they usually have difficulty in changing it widely (e.g.
changing their own voice timbre into that of another singer) ow-
ing to physical constraints in speech production. If it would be
possible for singers to freely control their voice timbre beyond
their physical constraints, it will open up entirely new ways for
singers to express more varieties of expression.

Singing synthesis [1, 2, 3] has been a growing interest in
computer-based music technology. Entering notes and lyrics to
the singing synthesis engine, users (e.g., composers and singers)
can easily produce a synthesized singing voice which has a spe-
cific singer’s voice characteristics, different from those of the
users. To flexibly control the synthesized singing voice as the
users want, there has also been proposed a technique capable of
automatically adjusting parameters of the singing voice synthe-
sis engine so that the variation of power and pitch in the synthe-
sized singing voice is similar to that of the given user’s natural

singing voice [4, 5]. Although these technologies using singing
voice synthesis engines are very effective to produce the singing
voices desired by the users, it is essentially difficult to directly
convert singers’ singing voices in realtime.

Several singing voice conversion methods have been pro-
posed to make it possible for a singer to sing a song with
the desired voice timbre beyond their own physical constraints.
One of the typical methods is singing voice morphing between
singing voices of different singers or different singing styles [6]
using the speech analysis/synthesis framework [7], which can
only be applied to singing voice samples of the same song. To
convert a singer’s voice timbre in any song, statistical voice con-
version (VC) techniques [8, 9] have been successfully applied
to singing voice conversion. This singing VC (SVC) method
makes it possible to convert a source singer’s singing voice
into another target singer’s singing voice [10, 11]. A conver-
sion model is trained in advance using acoustic features, which
are extracted from a parallel data set of song pairs sung by the
source and target singers. The trained conversion model makes
it possible to convert the acoustic features of the source singer’s
singing voice into those of the target singer’s singing voice in
any song while keeping the linguistic information of the lyrics
unchanged. Recently eigenvoice conversion (EVC) techniques
[12, 13] have also been successfully applied to SVC [14] to de-
velop a more flexible SVC system capable of achieving con-
version between arbitrary source and target singers even if a
parallel data set is not available.

Although SVC has great potential to bring a new singing
styles to singers, there remain several problems to be solved.
One of the biggest problems is that speech quality of the con-
verted singing voice is significantly degraded compared to that
of the natural singing voice. Conventional SVC uses a vocoder
to generate a waveform of the converted singing voice from the
converted acoustic features. Consequently, speech quality of
the converted singing voice suffers from various errors, such as
F0 extraction errors, modeling errors in spectral parameteriza-
tion, and oversmoothing effects often observed in the converted
acoustic features. It is essential to address these issues to allow
for practical use of SVC.

In this paper, we propose a SVC method that can per-
form SVC without the waveform generation process based on a
vocoder. In conventional SVC, spectral envelope, F0, and aperi-
odic components are extracted from the source singer’s singing
voice and converted to the target singer’s singing voice. How-
ever, in intra-gender SVC, it is not always necessary to convert
F0 values of the source singer to those of the target because
both singers often sing on key. Moreover, the conversion of the
aperiodic components usually causes only a small impact on
the converted singing voice. Therefore, it is expected that only
spectral conversion is sufficient to achieve acceptable quality
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in intra-gender SVC. Based on this idea, in the proposed SVC
method, we focus only on converting the spectral envelope. The
waveform of the source singer is directly modified with a digital
filter that uses the time-varying difference in the spectral enve-
lope between the source and target singer’s singing voices. This
spectrum differential is statistically estimated from the spectral
envelop of the source singer. It is shown from results of sub-
jective experimental evaluation that the proposed SVC method
significantly improves speech quality of the converted singing
voice compared to the conventional SVC methods.

2. Statistical singing voice conversion (SVC)
SVC consists of a training process and a conversion process.
In the training process, a joint probability density function of
acoustic features of the source and target singers’ singing voices
is modeled with a Gaussian mixture model (GMM) using a par-
allel data set in the same manner as in statistical VC for nor-
mal voices [11]. As the acoustic features of the source and
target singers, we employ 2D-dimensional joint static and dy-
namic feature vectors Xt = [x⊤

t ,∆x⊤
t ]

⊤ of the source and
Y t = [y⊤

t ,∆y⊤
t ]

⊤ of the target consisting of D-dimensional
static feature vectors xt and yt and their dynamic feature vec-
tors ∆xt and ∆yt at frame t, respectively, where ⊤ denotes
the transposition of the vector. Their joint probability density
modeled by the GMM is given by

P (Xt,Y t|λ)

=
M∑

m=1

αmN
([

Xt

Y t

]
;

[
µ(X)

m

µ(Y )
m

]
,

[
Σ(XX)

m Σ(XY )
m

Σ(Y X)
m Σ(Y Y )

m

])
, (1)

where N (·;µ,Σ) denotes the normal distribution with a mean
vector µ and a covariance matrix Σ. The mixture component
index is m. The total number of mixture components is M . λ
is a GMM parameter set consisting of the mixture-component
weight αm, the mean vector µm, and the covariance matrix Σm

of the m-th mixture component. The GMM is trained using
joint vectors of Xt and Y t in the parallel data set, which are
automatically aligned to each other by dynamic time warping.

In the conversion process, the source singer’s singing voice
is converted into the target singer’s singing voice using maxi-
mum likelihood estimation of speech parameter trajectory with
the GMM [9]. Time sequence vectors of the source features
and the target features are denoted as X = [X⊤

1 , · · · ,X⊤
T ]

⊤

and Y = [Y ⊤
1 , · · · ,Y ⊤

T ]
⊤, where T is the number of frames

included in the time sequence of the given source feature vec-
tors. A time sequence vector of the converted static features
ŷ = [ŷ⊤

1 , · · · , ŷ⊤
T ]

⊤ is determined as follows:

ŷ = argmax
y

P (Y |X,λ) subject to Y = Wy, (2)

where W is a transformation matrix to expand the static fea-
ture vector sequence into the joint static and dynamic feature
vector sequence [15]. The conditional probability density func-
tion P (Y |X,λ) is analytically derived from the GMM of the
joint probability density given by Eq. (1). To alleviate the over-
smoothing effects that usually make the converted singing voice
sound muffled, global variance (GV) [9] is also considered to
compensate the variation of converted feature vector sequence.
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Figure 1: Conversion processes of conventional SVC (in Sec-
tion 2) and proposed SVC methods (in Section 3).

3. SVC based on differential spectral
compensation

Figure 1 shows the conversion processes of the conventional
and proposed SVC methods. In the proposed method, the dif-
ference of the spectral features of the source and target singers
is estimated from the source singer’s spectral features using a
differential GMM (DIFFGMM) modeling the joint probability
density of the source singer’s spectral features and the differ-
ence in the spectral features. Voice timbre of the source singer
is converted into that of the target singer by directly filtering an
input natural singing voice of the source singer with the con-
verted spectral feature differential. The proposed SVC method
doesn’t need to generate excitation signals, which are needed in
vocoder-based waveform generation. Therefore, the converted
singing voice is free from various errors usually observed in the
traditional SVC, such as F0 extraction errors, unvoiced/voiced
decision errors, spectral parameterization errors caused by lif-
tering on the mel-cepstrum, and so on. On the other hand, the
excitation parameters can not be converted in the proposed SVC
method.

The DIFFGMM is analytically derived from the traditional
GMM (in Eq. (1)) used in the conventional SVC. Let Dt =[
d⊤
t ,∆d⊤

t

]⊤ denote the static and dynamic differential feature
vector, where dt = yt − xt. The 2D-dimensional joint static
and dynamic feature vector between the source and the differ-
ential features is given by

[
Xt

Dt

]
=

[
Xt

Y t −Xt

]
= A

[
Xt

Y t

]
, (3)

A =

[
I 0
−I I

]
, (4)

where A is a transformation matrix that transforms the joint
feature vector between the source and target features into that
of the source and difference features. I denotes the identity
matrix. Applying the transformation matrix to the traditional
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GMM in Eq. (1), the DIFFGMM is derived as follows:

P (Xt,Dt|λ)

=
M∑

m=1

αmN
([

Xt

Dt

]
;

[
µ(X)

m

µ(D)
m

]
,

[
Σ(XX)

m Σ(XD)
m

Σ(DX)
m Σ(DD)

m

])
, (5)

µ(D)
m = µ(Y )

m − µ(X)
m , (6)

Σ(XD)
m = Σ(DX)

m
⊤
= Σ(XY )

m −Σ(XX)
m , (7)

Σ(DD)
m = Σ(XX)

m +Σ(Y Y )
m −Σ(XY )

m −Σ(Y X)
m . (8)

The converted differential feature vector is determined in the
same manner as described in Section 2. In this paper, the GV
is not considered in the proposed SVC method based on the
spectrum differential.

4. Experimental evaluation
4.1. Experimental conditions

We evaluated speech quality and singer identity of the converted
singing voices to compare the conventional SVC and the pro-
posed SVC. We used singing voices of 21 Japanese traditional
songs, which were divided into 152 phrases, where the duration
of each phrase was approximately 8 seconds. 3 males and 3 fe-
males sang these phrases. The sampling frequency was set to
16 kHz.

STRAIGHT [16] was used to extract spectral envelopes,
which were parameterized to the 1-24th, 1-32th, and 1-40th
mel-cepstral coefficients as spectral features. As the source ex-
citation features for the conventional SVC, we used F0 and ape-
riodic components in five frequency bands, i.e., 0-1, 1-2, 2-4, 4-
6, and 6-8 kHz, which were also extracted by STRAIGHT [17].
The frame shift was 5 ms. The mel log spectrum approximation
(MLSA) filter [18] was used as the synthesis filter in both the
conventional and proposed methods.

We used 80 phrases for the GMM training and the remain-
ing 72 phrases were used for evaluation. The speaker-dependent
GMMs were separately trained for individual singer pairs deter-
mined in a round-robin fashion within intra-gender singers. The
number of mixture components for the mel-cepstral coefficients
was 128 and for the aperiodic components was 64.

Two preference tests were conducted. Speech quality of the
converted singing voices was evaluated in the first preference
test. The converted singing voice samples of the conventional
SVC and the proposed SVC for the same phrase were presented
to listeners in random order. The listeners selected which sam-
ple had better sound quality. On the other hand, the conversion
accuracy of singer identity of the converted singing voices was
evaluated in the other preference test. A natural singing voice
sample of the target singer was presented to the listeners first as
a reference. Then, the converted singing voice samples of the
conventional SVC and the proposed SVC for the same phrase
were presented in random order. The listeners selected which
sample was more similar to the reference natural singing voice
in terms of singer identity. The number of listeners was 8 and
each listener evaluated 24 sample pairs in each order setting
of the mel-cepstral coefficients. All listeners don’t specialize in
audio and they were allowed to replay each sample pair as many
times as necessary.

4.2. Experimental results

Figure 2 indicates the results of the preference test for the
speech quality. The proposed SVC makes it possible to gen-
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Figure 3: Evaluation of singer identity.

erate the converted speech with better speech quality than the
conventional SVC in any order setting of the mel-cepstral co-
efficients. This is assumed that the proposed SVC is free from
various errors caused in the vocoder-based waveform genera-
tion, such as F0 extraction errors or spectral modeling errors
caused by liftering.

Figure 3 indicates the results of the preference test for the
singer identity. The conversion accuracy of the singer identity
of the proposed SVC is not statistically significantly different
from that of the conventional SVC in any order setting of the
mel-cepstral coefficients. This result suggests that the aperiodic
components have little effect on the singer identity in singing
voices, and even if the proposed SVC cannot convert the excita-
tion features, the conversion accuracy of the singer identity still
remains equivalent to that of the conventional SVC.

These results demonstrate that the proposed SVC is capable
of converting the voice timbre with higher speech quality while
causing no degradation in the conversion accuracy of singer
identity compared to the conventional SVC. Note that the GV
is considered in the conventional SVC while not considered in
the proposed SVC.

4.3. Comparison of the converted spectral features

To more deeply analyze what yields naturalness improvements
in the proposed SVC, we examine in detail the spectral feature
trajectories of singing voices, which are given by

Source mel-cepstral coefficients extracted from the source
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Figure 4 shows trajectories of the mel-cepstral coefficients
in each sample. It can be observed from “Source” and “Tar-
get” that higher-order mel-cepstral coefficients tend to have
rapidly varying fluctuations. In other words, high modulation-
frequency components tend to be larger as the order of the mel-
cepstral coefficient is higher. On the other hand, such rapidly
varying fluctuations are not observed in the trajectory of higher-
order mel-cepstral coefficients of the “SVC (w/o GV).” They are
still not observed even if considering the GV in “SVC (w/ GV)”
although the GVs of higher-order mel-cepstral coefficients are
recovered well. Therefore, these fluctuations are not modeled
very well in SVC based on the conventional GMM. On the

other hand, these fluctuations are still observed in “DIFFSVC
(filtered).” Note that they do not appear in the estimated trajec-
tories of the differences of mel-cepstral coefficients “DIFFSVC
(diff feature),” which are estimated with the differential GMM
in the proposed SVC. However, in the proposed SVC, the source
singing voices are directly filtered to generate the converted
singing voices. Therefore, these fluctuations observed in the
source singing voices are still kept in the singing voices con-
verted by the proposed SVC “DIFFSVC (filtered).” It is pos-
sible that the quality improvement is yielded by the proposed
SVC because it generates converted trajectories having these
fluctuations similar to those in natural singing voices.

Figure 5 shows the GVs calculated from trajectories of mel-
cepstral coefficients. As reported in the previous work [9],
the GVs of the converted mel-cepstral coefficients tend to be
smaller in “SVC (w/o GV)” and this tendency is clearly ob-
served especially in higher-order mel-cepstral coefficients, but
the GVs are recovered by “SVC (w/ GV),” being almost equiv-
alent to those of the target “Target.” On the other hand, the
GVs of the mel-cepstral coefficients in the proposed method
“DIFFSVC (filtered)” tend to be smaller than those of the tar-
get. This tendency can also be observed in Figure 4. Note that
the GV is not considered in the proposed method in this paper.
It is expected that naturalness of the singing voices converted
by the proposed SVC can be further improved by considering
the GV so that the GVs of the filtered mel-cepstral coefficients
are close to those of the target.

5. Conclusions
In order to improve quality of singing voice conversion (SVC),
we proposed SVC with direct waveform modification based
on the spectrum differential. The experimental results demon-
strated that the proposed SVC makes it possible to convert voice
timbre of a source singer into that of a target singer with higher
speech quality compared to conventional SVC. In future work,
we plan to implement a conversion algorithm consider in the
global variance for the proposed method to further improve
quality of the converted singing voice.
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